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This paper is concerned with static solutions of finitely deformed elastic membranes
regarded as thin shells. It deals with deformations that can be maintained, in the
absence of body force, in every isotropic elastic membrane by the application of edge
loads and/or uniform normal surface loads on the major surfaces of the thin shell-like
body. The solutions, which are valid for both compressible and incompressible
materials, are obtained with the use of a strain energy response function which
depends on the metric tensor of the membrane in its deformed configuration. The
main results are summarized by several theorems and their corollaries in accordance
with three mutually exclusive cases for which the initial undeformed surface of the
membrane (which may be a sector of a complete or closed surface) is, respectively,
developable, spherical and a surface of variable Gaussian curvature satlsfymg certain
differential criteria. The corresponding deformed surfaces are, respectively, a plane
or a right circular cylinder, a sphere and a surface of constant mean curvature. These
results are exhaustive in that they represent all finite deformation solutions possible
in every isotropic elastic material characterized by the strain energy response men-
tioned above. Also discussed are some special cases of the general results and several
families of solutions in terms of an alternative description which should be useful in
application and which permit easy interpretations.
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146 P. M. NAGHDI AND P. Y. TANG

1. INTRODUCTION

In the three-dimensional theory of finite elasticity a state of deformation possible in every
isotropic material, in the absence of body force, is often referred to in the current literature as a
controllable (or a universal) state. A programme of fruitful research for such solutions in the
case of homogeneous, isotropic and incompressible elastic material was initiated by Rivlin
nearly three decades ago. (References to Rivlin’s original contributions and others on the subject
can be found in Green & Adkins (1970) and Truesdell & Noll (1965).) Subsequently, Ericksen
(1954) considered the problem of finding all of the solutions possible in every isotropic incom-
pressible material but the class of deformations found by him was not exhaustive. In recent
years a number of additional solutions have been found by others but the question of complete-
ness of solutions found remains unresolved in the context of the three-dimensional theory. It
should be remarked here that an important application of the finite deformation solutions referred
to above arises from the fact that they permit direct determination of elastic response functions
from comparisons of experiments and predictions of the theory. Indeed, such a procedure was
used by Rivlin & Saunders (1951) for determining the form of the constitutive relations of various
rubbers regarded as incompressible elastic materials.

By way of additional background, it should be mentioned that some controllable solutions for
finitely deformed elastic membranes have been discussed previously by Adkins & Rivlin (1952),
which include a detailed study of the inflation of a circular plane sheet and the inflation of a
closed spherical membrane. In the latter case, the formula for the internal pressure required
to inflate the membrane recovers more directly the results of a solution of Green & Shield (1950)
for thick spherical shells when these are specialized to thin shells by assuming that the ratio of
thickness to radius is much smaller than unity. In addition, a class of controllable solutions for
axisymmetrically deformed membranes of revolution is given by Green & Adkins (1970, ch. 4).

The present paper is concerned with static solutions of finitely deformed elastic membranes
regarded as thin shells. It deals with deformations that can be maintained, in the absence of body
force, in every isotropic elastic material by the application of edge loads and/or uniform normal
surface loads on the major surfaces of the thin shell-like body. As in the three-dimensional
theory, for brevity we adopt the terminology of controllable states or solutions also in the present
development.} The controllable solutions, which are valid for both compressible and in-
compressible materials, are obtained with the use of a strain energy response function which
depends explicitly on the metric tensor of the membrane in its deformed configuration, or
equivalently on the coefficients of the first fundamental form of the deformed surfaces.§ Alter-
natively the strain energy may be expressed in terms of a relative strain measure, i.e., in terms
of the difference of the metric tensor of the deformed state and that of the initial undeformed
state, but this form is not employed here.

The main results derived are summarized in § 6 by three theorems, namely theorems 6.5-6.7,
and several corollaries in accordance with three mutually exclusive cases for which the initial
undeformed surface (which may be a sector of a complete or closed surface) is, respectively,
developable, spherical and a surface of variable Gaussian curvature satisfying a certain differ-

} Here again this terminology refers to a class of deformation if it can be maintained in every material of
that class in the absence of body force.

§ In the present development the strain energy is assumed not to depend explicitly on the reference geometry,
i.e. on the coeflicients of the second fundamental form in the reference state.


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

Y,

Py
a \

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATION IN ISOTROPIC ELASTIC MEMBRANE 147

ential criterion. The corresponding deformed surfaces must be, respectively, a plane or a right
circular cylinder, a sphere and a surface of constant mean curvature. In all cases the controllable
deformation results in a homogeneous strain on the deformed surface. Moreover, in the case of
an initial surface with a variable Gaussian curvature, the deformation results in a conformal
correspondence between the initial and the deformed surface, while in the case of an initially
spherical surface a net of orthogonal trajectories on the initial surface must be deformed into
a net of lines of curvature on the deformed surface. It should be remarked that the solutions
obtained are both necessary and sufficient for the satisfaction of the system of differential equations
resulting from compatibility and equilibrium in the absence of body force, after using also the
relevant constitutive equations. The results obtained are therefore exhaustive, i.e. for the class
of elastic material characterized by the strain energy response mentioned above, we have
obtained here all possible controllable solutions.

The differential criterion referred to above essentially imposes a restriction on the variable
Gaussian curvature of the initial undeformed surface in order to ensure the existence of the
second fundamental form of the deformed surface (see the equation (5.22)). In general, it is
extremely difficult to integrate this second order partial differential equation and obtain more
explicitinformation regarding the shape of the initial surface. However, whenever the differential
criterion is satisfied, our solutions in the deformed configuration can be expressed explicitly
in terms of the initial geometry of the undeformed membrane.

After collecting in § 2 various formulae from the theory of a surface embedded in a Euclidean
3-space and also summarizing the main results from the nonlinear theory of elastic membranes
by direct approach, in § 3 we show equivalence between the development obtained by direct
approach and the corresponding results derived from the three-dimensional equations of
nonlinear elasticity as given by Green & Adkins (1970) for both compressible and incompressible
materials. Next, the problem of controllable deformation of an isotropic, elastic membrane is
formulated in § 4 and a summary of the solutions of the first and the second fundamental forms
of the deformed surface are given in § 5 with details of their derivations outlined in two appendices
A and B. By using the latter results, static controllable solutions are finally obtained in §6,
which lead to the theorems 6.5-6.7 mentioned earlier.

The differential criterion mentioned above is examined in the case of an initial surface with a
variable Gaussian curvature for surfaces of constant mean curvatures and negative Gaussian
curvatures; the results are summarized as theorem 6.4 and corollaries 6.1, 6.2 and 6.3. One of
these, namely corollary 6.1, states that in the absence of the surface load, among all non-
developable surfaces of constant mean curvature only a nondevelopable minimal surface is a
possible initial surface in a controllable deformation. Corollary 6.3 shows that a minimal surface
can only be controllably deformed into another minimal surface, provided that the surface load
is absent. When a surface of constant mean curvature (and also of negative Gaussian curvature)
is controllably deformed into another surface of constant mean curvature under a nonzero
uniform normal surface load, the mean curvatures of the initial and the deformed surfaces are
proportional to each other (corollary 6.2).

The main results of § 6 are next employed in § 7 which deals with certain classes of membranes
of variable Gaussian curvatures in the initial undeformed state when at least either the deformed
or the initial undeformed configuration is in the form of a surface of revolution. In particular,
the development of §7 leads to the corollaries 7.1 and 7.2 concerning the character of the

deformed surface when the corresponding initial surface is a sector of nondevelopable surface of
19-2
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148 P. M. NAGHDI AND P. Y. TANG

revolution. With the help of corollaries 7.1 and 7.2, we also obtain controllable deformations
for an elastic membrane in which both the initial and the deformed surfaces are complete surfaces
of revolution. These results are in complete agreement with those obtained by Green & Adkins
(1970, §§ 11 and 14) from the three-dimensional formulation. The corollaries 7.3 and 7.4 are
appropriate for the case in which the deformed surface is a sector of a surface of revolution.
One of these, namely corollary 7.3, states that the only possible nondevelopable surface of
revolution resulting from a controllable deformation under the action of edge loads alone is a
catenary. Finally, in § 8, we consider some special cases of the general results of § 6. Employing
an alternative description for the deformation of the initial undeformed surface into the deformed
surface of the membrane, we discuss five particular families of controllable deformations in
which each of the initial and the deformed surfaces may be a plane, a right circular cylinder or
a sphere. The corresponding solutions of these five families permit easy interpretations of the
general results and should be useful in application.

2. NOTATION AND BASIC EQUATIONS

We are concerned here with static deformation of a two-dimensional material surface, em-
bedded in a Euclidean three-space &3. Let convected coordinates 6% (« = 1,2) be assigned to
each particle (or material point) of the surface, let the surface occupied by the material surface
in the deformed and the undeformed reference configurations be referred to as 4 and &,
respectively, and let R denote the position vector, relative to a fixed origin, of a typical point
of &. Then, R = R(6*) specifies the place occupied by the material point in the undeformed
configuration which we take to be the initial configuration. Likewise, the position vector of 4,
relative to the same fixed origin, is given by r = r(6*) and this specifies the place occupied by
the material point 6* in the deformed configuration.

Let a,, denote the base vectors along the §*-curves on 4 and let @, be the unit normal to 4. Then,

A, =71, @, a5=2a,5 a=det(a,z) >0, } (2.1)
a*-a; =20y a*af=a", aa,=2055 a*=a7a, '
and a,xa;=¢€,,a®
o B af ’3 } (2.2)
a,,a; =0, azg-a;=1, a>=a,,

where a comma stands for partial differentiation with respect to 6%, a,; and ¢*/ are the com-
ponents of the first fundamental form of 4 and its conjugate, 0% is the Kronecker symbol in
2-space, and €, ,, ¢*f are the e-systems for the surface 4 defined by

€ap = abe, g €F =aterf, ¢, 6P =6, } (2.3)
e]]_ =322=311 =322 =0, 312=312=—321 = —321: 1. ’
Also, we note the relations Qup = €4 €5, 051, a*F = e*chay,, (2.4)
as well as the identities
€ag €y = Gapley = Gay gy €561 = a*faf —a™alk, (2.5)

For later reference, we recall the formulae
Topy = Taﬂ,v — 1y Top— Ty Toos
T%b,, = T%F  + 1%, TP+ T4, T,
Topy—Tayp = Rupy Th (2.6)
A _ A A A A
R'uﬂv - dv,ﬁ’_raﬂ,y'i'ra'lctvrﬂﬁ_rgﬂrﬂw

RAaﬂy = a/\(rR?‘acﬂ'ya Raﬂ'yé‘ = —R/S’oc‘ya,
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where a vertical bar (|) stands for covariant differentiation with respect to the metric tensor
aup RY,p, and R,,;, are the curvature tensors for the surface 4 and the surface Christoffel

symbols in (2.6) are defined by —
w8 v } (2.7)
a;? y)

Pﬂ‘ﬂ’)’ = a, F af = f(aa‘ysﬂ'*'aﬁ'ya

We record here the expressions for the partial derivatives of a,, a*/ and the determinant a
which can be expressed in terms of the Christoffel symbols. Thus

Gopy = Gae L fy+ape Iy = Topp+ gy
@b, = —a*Th,—abTg, (2.8)
(@), = o,

and we note that Aupy =0, =0, €,p,=¢F, =0 (2.9)

In the above equations and throughout the paper, all Greek indices take the values 1,2,
Latin indices take the values 1, 2, 8 and the usual summation convention over a repeated index
(one subscript and one superscript) is employed. Also, the raising and the lowering of indices
of the components of surface tensors is accomplished with the use of a,, and a*#. Whenever
possible, in what follows, we use capital letters to represent the duals of quantities associated
with 4 in the reference surface &. For example, the base vectors and the components of the
metric tensor of the reference surface & will be designated by A; and by 4,4, A*/. On the other
hand, for such quantities as the Christoffel symbols, the e-systems and the curvature tensor
associated with the surface &, we use the same letters to which we add an overbar. Generally,
we need only to employ covariant derivatives with respect to the metric tensor of the surface 4;
however, if it becomes necessary to exhibit covariant differentiation with respect to 4,,, we
indicate this with the use of a dagger (1). We note that results similar to those in (2.1)—(2.9) hold
also for the surface . In particular, we record the following formulae:

éaﬂ = Aéeaﬂ, Edﬂ = A_%e"‘p, A = det (Aaﬂ) > 0, (2.10)
Igp=A47T,p, Toupy =4y T0p=3(Aayp+Appa—Aapy)s Lo Lis = Tiy Dunns
a.nd. El\“ﬂ.}, = .I a'y).,/i'_Faﬂ/\,y'l'FAyﬂIfﬂ_f/\ﬂyFa{Ly’ (2.11)

which can also be expressed in terms of 4, and its partial derivatives.
For future use, we express now the ratio ¢/4 and ¢*# in terms of certain invariants associated

with the metric tensor of 4. Put « — Aok, (2.12)
and introduce the invariants I; and I, by

I = ¢} = A*Pa,p, I, = c5cl = A%APay, ay,. (2.13)
By the identity 2det (¢%) = 2(cic3—cyed) = ())2—ccl = IF—1,
and the expression for the determinant of (2.12), namely

det (¢) = det (a,) [det (4,,)]7! = a/4,

we arrive at ald = Y1 -1,). (2.14)
Similarly, with the help of (2.13) and (2.14), from (2.3),, (2.4),, (2.10), and the dual of (2.5),
we obtain @b = (13— I)-1[I, AP — A% APa,). (2.15)
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150 P. M. NAGHDI AND P. Y. TANG

We now recall the extrinsic properties of the surface. Let 4,; denote the coefficients of the
second fundamental form of 4. Then,

bop=—8, a35= 050, bf=a"b,, (2.16)

1 1 1

2H = bz:-—--}-— K=— (2.17)
41

b

Ty Ty

where H and K are the mean and the Gaussian curvatures of 4 and r, and r, denote the principal
radii of curvature of the surface 4. For later reference, we also recall the formulae of Gauss and
Mainardi-Codazzi. The latter given by

bugy =b (2.18)

afly aylf

involve only two independent equations corresponding to £ # 7y, while for # = y it is identically
satisfied. Since the covariant surface curvature tensor has only one independent component,
there is only one independent equation of Gauss for the surface 4 and this can be expressed as

Rinis = det (byp) = b1y byg— b3, = ak, (2.19)
or equivalently as R, 5, = Keypes (2.20)

We denote the coefficient of the second fundamental form of the surface & by B, , the principal
radii of curvature of & by R;, R, and the corresponding mean and Gaussian curvatures of the
surface & by H and K, respectively. Results similar to those of (2.16)—(2.20) hold also for the
surface &. In particular, we record the expressions

Baﬁ”r'y = Bd‘yfﬂ’ .R-lzlz = det (Ba/?) = AK. (2.21)

In the remainder of this section, we summarize the principal results from the nonlinear
membrane theory of elastic shells for isotropic materials derived by direct approach. (For an
account of the membrane theory by direct approach see § 14 of Naghdi (1972).) Let ¢ be a closed
curve on 4 and let N—— (2.22)
be the outward unit normal to ¢ lying in the surface. Further, let the tangential vector field N,
which depends on v, represent the contact force (or the curve force vector) per unit length of ¢.
Then, it can be shown that N = N, = Nw, a,, (2.23)
where N*7 are the components of N* referred to a,,. The local equation for conservation of mass
can be expressed as pat = po b = , (2.24)
where p and p, denote the mass densities of the surface 4 and the reference surface &, respectively,
and £ is a function of 6* only. The equations of equilibrium are

Ndﬂ'a-l—pfﬂ = 0, bdﬂ Na/} +pf3 = 0,}

.
No# = NP, (2.25)

where f? = f-a® are the components of the assigned force f referred to the base vectors a;. It
should be recalled that the assigned field f represents the combined effect of the stress vector on
the major surfaces of the shell-like body, which we denote by f,, and a contribution arising from
the three-dimensional body force f, (see Naghdi 1972, § 11). In the present paper, we are con-
cerned only with solutions of the membrane theory in the absence of body force so that f, = 0.
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Then, the components f* in (2.25), , become f% = f; and for later convenience we also introduce
the notation

p=0pf*=pf (2.26)

In view of the remarks preceding (2.26), it is clear that p and f® can be interpreted as the normal
pressure per unit area of 4 and the normal pressure per unit mass of 4, respectively.

Within the scope of the purely mechanical theory, we may express the constitutive equations
for N*# in terms of a strain energy ¥ per unit mass of 4. We may begin by assuming ¥ to be a
function of base vectors @, and their reference values in the form

Y =1(a;A,). (2.27)
Then, by standard techniques we obtain}
¥ = (aop; Aup),
Not = p (24 £1).

Oa,; Qag,

(2.28)

The above constitutive equations are valid for an elastic membrane which is anisotropic in
the reference state. Assuming that the response function ¥ is a polynomial in its arguments, then
for an elastic membrane which initially is isotropic with a centre of symmetry, the strain energy
density may be expressed as a different function of the joint invariants of a4, 4,, as defined

by (2.13). H
Y (2:19). Henee V= B, 1,). (2.29)

In order to express the constitutive equations for N*# in terms of the function ¢ for isotropic
materials, we first record the following partial derivatives of the invariants (2.13), i.e.

0l/0a,; = A*F, Qly[0a,, = 24%AFa,,. (2.80)
Then, by chain rule differentiation, the constitutive equations (2.28), in terms of ¢ become
Neb = 2p[ W) A*F + 2V, A% APray, ], (2.31)
where use has been made of (2.30) and we have set

¥, =W, (I, 1) =opl, (a=1,2). (2.32)

3. EQUIVALENCE OF RESULTS BY DIRECT APPROACH AND
THOSE DERIVED FROM THREE-DIMENSIONAL THEORY

The basic equations governing the equilibrium of a membrane by direct approach and the
related constitutive results for a homogeneous and isotropic elastic membrane are summarized
in § 2 (between equations (2.22) and (2.32)) in a form which is particularly convenient here. A
derivation of corresponding results from the three-dimensional equations of nonlinear elasticity,
including a detailed discussion of constitutive equations for both compressible and incom-
pressible isotropic membranes, is given by Green & Adkins (1970). In the latter derivation, the
response function for the strain energy density does not depend explicitly on the coefficients

1 Instead of (2.28),, it is possible to assume that the function ¥ depends also on the second fundamental
form B,z of the reference surface, but in the present paper the dependence of the strain energy on B, 4is excluded.
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152 P. M. NAGHDI AND P. Y. TANG

B, ; of the second fundamental form in the reference configurationf; and, as will become evident
presently, 1-1 correspondence can be established between the field equations and the constitutive
equations of this derivation and the corresponding results by direct approach given in § 2.
Consider a three-dimensional shell-like body # embedded in a Euclidean 3-space and identify
the material points (or the particles) of the body with a system of convected coordinates ¢¢; the
convected coordinates are so chosen that they coincide with a normal coordinate system in the
present deformed configuration with 6* (« = 1, 2) on some reference surface, say the surface
0% = 0, and with 62 along the normal to this surface. The boundary 0% of the shell-like body in
the deformed configuration consists of the major surfaces 6% = + (%) and the lateral surface
f(61,6%) = 0, where 2h(0*) denotes the thickness. Let p denote the position vector, relative to
a fixed origin, of a typical particle of % in the present configuration. Then, p may be specified by

p = r(0*) +6G%a,, (3.1)

where r is the position vector of the middle surface % = 0 designated as 4 and a, is the unit
normal to this surface.§ We denote the position vector, relative to the same fixed origin, of a
typical particle of Z in the initial undeformed configuration by P and write

P = R(0%) + (0%]) Ay +O((6%)?), (3.2)

where R is the position vector of the surface 3 = 0 in the undeformed configuration designated
as&, Ay is the unit normal to &%, A = A(6*) is the extension ratio (or the principal stretch) in the
Ag direction and O stands for the usual order symbol, i.e. a function f,, is said to be O(e,,) if there
is a positive constant C'such that | f,| £ Cle,| for all sufficiently large n.

Let p* and p§ be the mass densities in the deformed and the undeformed configurations of
the shell-like body %, respectively, and recall the local equation of conservation of mass in the
form

p*gt = p§ Gt = k¥, (3.3)
where g=detgy, g;=28: 8, & =op[ob’, (3.4)
G = det G’i]" G“' = Gi‘Gj, G’i = aPl@' (3.5)

and £* is a function of 6°. The relation of the surface 6° = 0 in the deformed configuration to
the bounding surfaces 6% = + 4(6*) is prescribed by

h
k*63d0® = 0. (3.6)
~h

Also, let p be the mass density per unit area of 4 and p, the mass density per unit area of & and
define

3 3
pat = | p*gtd3, p, At =| pkGEdes. 3.7
-n

Then, the integration of (3.3) with respect to 6 between the limits 3 = — 4, &, yields the conserva-
tion of mass equation (2.24) provided we identify p and p, in (2.24) with (3.7), ,.

1 This is in line with all existing developments of constitutive equations for various types of elastic shell theory
from the three-dimensional equations (of which the membrane theory is one), where an assumption is introduced
equivalent to the specification that the response function for the strain energy density be independent of the
coefficients of the second fundamental form B, ; in the reference configuration.

§ Since later we identify the surface described by 63 = 0 with the surface 4 of section 2, it is convenient to
adopt the same notations such as (2.1) and (2.2) also in the present section.
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Let a, 4, a*f and 4,4, A*# stand for the components of the metric tensors of the surfaces 4 and
&, respectively, and let 2%(6*) be the thickness in the undeformed reference configuration of 4.
Further, let 7% denote the symmetric stress tensor per unit area in the deformed configuration
of the body and recall that the stress resultants N*# per unit length of the coordinates curves on
4 are defined by

h
Neb = f Brvedns
_h,u,u,, ’ (3.8)
= 8 —0%4, p = detul = (gla)},

where 44 is the second fundamental form of the surface 4.

In what follows, we confine attention to the case in which the external surface loads are along
the normals to the major surfaces 8 = + £(6%). Then, the equilibrium equations for the membrane
are of the same forms as those given by (2.25) with f# = 0 provided N#f is identified with
(3.8); and

pna% = [T3-——h,a Ta]gs=h_[T3—h’a Ta]t93=_h, (3.9)

where T = giriig, (3.10)
PiXPy

d n= = 2 c=pla,+h,a; 3.11

o |P1x Pyl P = Ha byt ihads (8.11)

The basic equations of the membrane theory derived from the three-dimensional equations
consist of the kinematic expressions (3.1), (3.2) and the equilibrium equations (2.25) with
f# = 0 and with pf® = p given by (3.9), in addition to appropriate constitutive equations. For
an initially homogeneous medium for which the mass density p§ = const., the constitutive
equations for an isotropic elastic membrane (essentially in the notation of Green & Adkins
1970) are
Nob = 2RA{(D + APP) A2F +[(Jg A2+ A% = A2))) ¥ — A2D] a*F},
2D+ QS — AP+ P =0, (3.12)
h = AL

For an elastic material which is compressible (in the context of the three-dimensional theory),

the functions @, ¥, P are related to a strain energy density W, per unit volume in the initial

undeformed configuration, by N

W = W(J, Jo, Js),

@ = 2(Jy)-toWfod, W =2(J,)-FoW[od, (3.13)
P = 2(J,) oo,

where the strain invariants J,, (m = 1, 2, 3) are
Jy = A+ A%%ay,, Ty = (a|d) (1+A%A,5a%F), Jy = A%fA (3.14)

and 4 = det 4. In the compressible case, the strain energy Wis a function of all three invariants
(3.14). Moreover, given the results (3.13), the equation (3.12), may be regarded as the equation
for the determination of the extension ratio A. On the other hand, for an incompressible material,
the incompressibility condition J; = 1 implies that A%z/4 = 1 and the scalar function P is no
longer given by a constitutive equation. In the latter incompressible case, corresponding to
(3.13), we have

W =W(h L), }

& = 20W[oJ,, ¥ =20W[oJ, (3.15)

20 Vol. 287. A.
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and the strain invariants are now reduced to
J, = A2+A“ﬂa“ﬂ, Jp= (1/A%) A, pa%F, Jy = A%afd = 1. (3.16)

As is evident from (8.15), in the case of an incompressible material, the strain energy depends
only on Jj, J, and the extension ratio is obtained from the contraint condition (3.16)3 and the
equation (3.12), can then be used to determine the scalar function P.

Now in order to compare the above constitutive equations with the corresponding expressions
by direct approach (see equations (2.29), (2.31) and (2.32)), we need to express (3.12); in
terms of the same variables as those in (2.31) and, in particular, eliminate A% from (3.12),. In
the incompressible case, by use of (3.16), (2.13);, (3.15),3 and the identities (2.14) and (2.15),
the expressions (3.12), and (3.16), , can be reduced to

~

1
Ne# = 4h (4) {[1 A L AT (RN a‘vf} o
= o oJ,

_(A\} aw ]/4
+8h(2) {[2(112—12)-2]5J—1+[2I](112—12)—2—%]m}AaﬁAﬁmg,, (3.17)
and J = 20 —I)+1, Jy= 2L ([—L)'+H(E—1,), (3.18)

respectively. In view of (3.18), the response function W in (3.11), may be regarded as a different
function W of 1,, I, and hence we may write

W =W(J ) = W(I, L), (3.19)

Further, using the chain rule for differentiation, we obtain from (3.19) and (3.18) that

ow ow ow
57; = [1—4L (17 - 1,)?] a‘z+[2(lf“lz)_1- 4112(112"‘12)—2'*'11] A
ow oW ow 2 (8.20)
A 2__7y-212" 2__7\-2__1712"
612 [2(11 12) ]aJ1+[2II(Il 12) 2] ajza
A\ (oW ow
af — — — AaB —— A% AL
so that N 45(‘1) {OIIA +2612A A ’Iag,,}. (3.21)

In order to put (3.21) in a form which would permit ready comparison with a corresponding
constitutive equation obtained by direct approach, we need an explicit expression relating the
density p, to the reference mass density pg of . To this end, following a customary procedure
for membranes and thin shells, we omit terms of O((6%)2) in the expansion (3.2) and adopt the
approximation for P which consists of only the first two terms on the right-hand side of (3.2).
In view of the usual assumption employed in the development of #hir shell theory, namely the
assumption that (£/R) < 1, R being the minimum radius of the curvature of the surface 6% = 0
in the undeformed configuration, it follows from (3.6) that the mass density p§ ~ k*[4?} is
independent of 6% and the condition (3.6) is satisfied to the order of approximation considered
(for details see Naghdi 1972, p. 472). We then find that (3.7), can be approximated by p, = 2/p§

so that
* p = 2k(Aja)} pt. (3.22)

1 The expression (3.22) is, of course, applicable to both incompressible and compressible materials.
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Using the last result and introducing the strain energy density 2 per unit mass p§ of the body #
in terms of the response function £, namely

2= s, m), (3.23)
Po
we find that the constitutive equation (3.21) becomes
) ()
Ne# = 2p [ Aaﬁ+2—j—A“5A/’”a§,,] (3.24)

which has the same form as (2.31).

When the material is compressible, A2 cannot be eliminated immediately as in the incom-
pressible case. However, with the help of (2.13),, (2.14), (2.15), (3.13) and (3.14)3, the con-
stitutive equations (3.12); , and the strain invariants J,, in (3.14) can be expressed in terms of
I, I, and A2 as follows:

oW oW oW oW
af — 2 — 2 -1 apf
N 45(4) [6J1+(A +11)an oL, (I3 —1,) (aJ Ilan)]A
AT 180 e @ O s
+sz(z) [ 557+ XU -1 (571“1672)]‘4 A, (3.25)
o o\ oW
2—-
2L — L) (aJ I’an) a5, =0
and B LRy, Jy= YD)+ XL, Jy= WS- ,). (3.26)

With the use of (3.25),, the constitutive equation (3.25); can be expressed in the following
compact form:

A\ oW oW oW A\ LW 174
wf = = 2 2 ap 4 _t 2 o AP
N 4Z(a) [aJ (A +I’)8J AllaJ]A +sﬁ(a> [ 550, -3 aJ]A APray,.  (3.27)

In view of (8.26), the response function W in (3.13) may be regarded as a different function
W’ of I, I, and A% Hence, we may write

W= W, Joy Jy) = W'(I, I, A2). (3.28)
Further, using the chain rule for differentiation, from (3.28) and (3.26) we obtain
oW’ oW oW o
o = oz T+ s+ LAy,
oW’ 10W AW
oW’ oW o
T ez Th aJ2+%( Lz
Comparison of (3.29), with (3.25), at once yields
OW'[oA2 = 0, (3.30)

so that in terms of the strain energy density response function 2 per unit mass p§ of % we have

= W'lpg = (11, I,) (3.31)

20-2
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and the constitutive equation (3.27) can be rewritten as
Net = 2p [g%muz%mwmﬂ], (3.32)
which is of the same form as (2.31).

The membrane theory discussed above, after elimination of A2 is characterized by a system
of two-dimensional equations which consist of the field equations (2.24) and (2.25) with f# = 0,
as well as the constitutive equations (3.23) and (3.24) for the incompressible material or (3.31)
and (3.32) for the compressible case. If we identify r and a4 in (3.1), as well as R and A; in the
approximation for the position vector P introduced above [following equation (3.21)], with
corresponding quantities of the direct development summarized in § 2, then the two develop-
ments are formally equivalent. In particular, comparison of the field equations and the con-
stitutive equations reveals a 1-1 correspondence between the two systems of equations provided
we identify: (i) the densities p and p, in (2.24) with the expressions (3.7);,; (ii) the normal
component of the assigned force per unit area of 4 given by (2.26) with the net normal surface
pressure p in (3.9); the components N/ in (2.25) with the stress resultants (3.8),; and the strain
energy response function ¢ in (2.29) either with the response function 2 for the incompressible
material or with the function £ in the compressible case.

4. FORMULATION OF THE PROBLEM

We are concerned here with large deformation solutions possible in every isotropic elastic
membrane whose strain energy response function is specified by (2.29). For brevity, in what
follows, we often refer to such solutions as controllable. Recalling (from § 2) that the surface &
in the initial undeformed configuration becomes the surface 4 in the deformed configuration of
the membrane, we assume that the initial mass density p, is uniform throughout %, i.e.}

Po = const. (4.1)

and that the external surface load acting on 4 is a uniform normal pressure alone. Thus, in the
absence of body force, the assigned fields in (2.25), , and (2.26) are

SE =0, f%=const. (4.2)

Let the coefficients of the first fundamental forms a,4(0?), 4,4(07) be positive definite, sym-
metric, real-valued tensor functions of class C2 and let the coefficients of the second fundamental
forms b,,(07), B,5(07) be symmetric real-valued functions of class C*. If the set of variables

4ap(07), B p(07) (4.3)
of the reference surface & and aup(07), byp(07) (4.4)

of the deformed surface 4 describe the desired controllable deformation resulting from a uniform
normal pressure (4.2), as well as appropriate edge loads, then (4.3) and (4.4) must satisfy the
continuity equation (2.24), the equilibrium equations (2.25) with p,, f#, f3 specified by (4.1)
and (4.2) and the compatibility equations (2.21), ,, (2.18) and (2.19) for every choice of the
response function ¥ in (2.29). These equations should yield the least restrictions to be imposed

+ The assumption (4.1) is a mild restriction in the present development. However, our reason for introducing
this assumption will become clear later in §5 [see the discussion preceding (5.10)].
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on the functions (4.3) and (4.4) in order to obtain all controllable solutions of the type under
consideration.

The restrictions demanded by the equilibrium equations are obtained by substituting the
constitutive equations (2.31) for N*# into the differential equations (2.25). Thus,

2 2
> Tr [2;0"6'{?_] + X ¥, [2/)—%"]3 a:l = _pfﬂ,
r=1 aaaﬂ la 7,8=1 aaa/)’ ’
! o (4.5)
r§1 !pr [2baﬂé;;;] = _f3>
where 0,[0a,,, (r = 1, 2), are given in (2.30), the functions ¥, are defined by (2.32) and
2
Y, = ®P(h, 1) (r,s =1,2). (4.6)

s = ol oI,

Observing that in (4.5), the assigned field f3 = constant if and only if /3, = 0, with the use of
(4.2) and the continuity equation (2.24), from (4.5) we deduce

2 A\E L 2 A\ 2,
T§1Tr [(Z) éaaﬂ]|a+r.sz=1¥’rs [(-‘7) a—aa;ls,a] - O,

2 2
E !‘p, [b aIr ] + Z gjrs [baﬂ_@[—r_]so’] = O’
r=1 o . aa“ﬂ ’

af N
ﬂodaﬂ s r,s=1

(4.7)

where we have also made use of the assumption (4.1). The above two conditions involve the
kinematic variables (4.3) and (4.4) and the material properties through the response function
¥ and its partial derivatives.

In order that (4.7) be satisfied by the variables (4.3) and (4.4) for every choice of , it is
necessary and sufficient that the coefficient of each distinct derivatives of ¥ in (4.7) vanish
independently. Equating to zero these coefficients and simplifying the resulting expressions with
the help of (2.9),, (2.13),,5, (2.30) and using the fact that, with 4%/ nonsingular, 42/I, ;, = 0
(s = 1,2) isequivalent to [, , = 0 orsimply I, = constant, we deduce the following six restrictions:

L =A%a,5 = ¢, I, =A%A4Ma,za,, = c,,

(80, (9 0] o

loe

bupA*P = ey bogag, A%AP = ¢,

where¢;, ..., ¢q are constants. Since these constants must be regarded as prescribed for controllable
deformations under discussion, henceforth they will be referred to as the prescribed deformation
parameters. f

By expanding the left-hand sides of (4.8), , and making use of the metric properties of both
a,p and 4, including (2.10), along with

Ayy >0, ags > 0 (nosumon a,p) (4.9)
and forming the identity 27, — I or equivalently
A, 4 Gy Ggp\2 Gyy | Qg \>
_2=Audel (G Gy Ao (B G
o=t = el o) [ama (252 ]) (#10
it can be shown that 61>0, 2,—¢220, (4.11)

1 It will become evident later that not all of these constants are independent.
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where in obtaining the last inequality we have also used the fact that a,y, 4,4 are reals. More-
over, with the help of (2.14), (2.1); and (2.10)3, subtraction of (4.8), from the square of (4.8),
results in the inequality
ald = (3 —c¢y) > 0. (4.12)
Also, from (4.12) and (4.11), we have the result
§ > 2¢5—c3 > 0. (4.13)

The deformation parameters ¢; and ¢, must be further restricted when the controllable
deformation is sustained by edge loads alone. These restrictions are specified in the following

Lemma 4.1. The specification f = 0, i.e. the absence of surface load, in a controllable deformation implies
the vanishing of the deformation parameters cy and ¢, and conversely:

f=0x=¢;=0¢,=0. (4.14)

Proof. In view of (4.2), we only need to show that f2 = 0 if and only if ¢; = ¢, = 0. If /3 = 0,
the right-hand side of (4.5), is zero; and, on the left-hand side of this equation, the coefficients
¥, (r = 1,2) must vanish independently for controllable deformations. But, by (2.30), , and
(4.8);, 9, these coefficients are ¢z and ¢; and this proves the ‘if” part of the lemma. The ‘only if’
part can be easily established by using the converse argument.

We close this section by making an additional observation concerning the nature of the
specification of the surface load. The equilibrium conditions in (4.8) have been deduced when the
surface load is a uniform normal pressure per unit mass as specified by (4.2). The same equili-
brium conditions (4.8) can be obtained if the surface load is specified by a uniform normal

pressure per unit area, i.e. by
fE=0, p=const. (4.15)

Hence, all of the results derived in this paper are valid regardless of whether the uniform normal
pressure is measured per unit mass or per unit area of the deformed surface 4.

5. SOLUTIONS FOR THE FIRST AND SECOND FUNDAMENTAL
FORMS OF THE DEFORMED MEMBRANE

The equilibrium conditions in (4.8), along with the compatibility equations (2.21); ,, (2.18)
and (2.19), characterize the restrictions for obtaining the desired controllable solutions when
J# and f? are specified by (4.2). The first four conditions of (4.8) consisting of two algebraic
equations (4.8); , and four scalar partial differential equations (4.8); 4 are restrictions on the
metric coefficients a,, of the deformed surface 4. Inasmuch as these equations do not involve
the coeflicients of the second fundamental form &, , of the deformed surface, we first solve the
system of equations (4.8) 5 3 4 for @, in terms of the initial metric tensor 4,4 and the prescribed
deformation parameters ¢, c,.

Solution for a,s. Recalling that the left-hand side of (4.12) was obtained from combination of
(4.8);, 5 and that ¢, ¢, are constants, we differentiate (4.12) with respect to 6+ and utilize (2.8),
and its dual to obtain T2, =0, (5.1)
where the temporary notation zI'Y, for the ‘difference’ Christoffel symbol is defined by

l'dp=TY—T}. (5.2)
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Making use of (4.12), (2.9),, (2.6),, the dual of (2.8), and (5.1), the restrictions (4.8); and
(4.8)4 can be reduced to A7 T8 = 0 (5.3)
and A%ay, [0y A7 + (T8, A1) = 0, (5.4)
respectively. '

It should be apparent that (5.1), (5.3) and (5.4) represent a system of six simultaneous homo-
geneous algebraic equations in the six unknown variables ;I'%s. This system of equations has
possible nontrivial solution only if the determinant of the coefficients of ;I'}; in (5.1), (5.3) and

(5.4), namely
_ 44y, 4y zg_zzg)z [ an ﬁz_z_)]"'
Ad=-— {A(Au )+ e (24 22) [ (5:5)

vanishes. Since each of the two squared quantities in (5.5) is real and independent and since
4 > 0, for the singular case in which 4 = 0 we have

Ay _On iy (G 0w
a2 a2 2). (9
With the help of (4.8),, the dual of (2.4), and (5.6) we then obtain

op = 3014ap (62> 0). (5.7)

In view of the simple relation (5.7), it follows from the definition (2.7) and (2.4), and their
duals, as well as (5.2), that _

alap=0 or IYp=1I% (5.8)
trivially satisfies the system of equations (5.1), (5.3) and (5.4). It may be emphasized that the
above solution for the singular case is obtained with the help of (4.8), and hence (5.8) should be
regarded as a solution of (4.8),, (5.1), (5.3) and (5.4).

We consider now the system of equations (5.1), (5.3) and (5.4) when 4 does not vanish. Since
homogeneous algebraic equations with nonzero determinant of the coefficients have trivial
solutions, it follows at once that (5.8) is also a solution in this case. To show that the solution
(5.8) also satisfies (4.8), in the nonsingular case (4 # 0), we differentiate (4.8), covariantly
(with respect to a, ) and then by a procedure similar to that which led to (5.4), write the resulting
expression in the form

agplalsy APY + 4L, 427] = 0, (5.9)
which is identically satisfied by (5.8). Hence, (5.8) is also a solution of (4.8),, (5.1), (5.3) and
(5.4) in the nonsingular case.

With reference to the system of equations which led to the solution (5.8), it is worth observing
here that in the singular case for which the determinant 4 in (5.5) vanishes, not all the six
equations (5.1), (5.3) and (5.4) are linearly independent and we need to have (4.8), in order to
obtain the result (5.8). In the nonsingular case (4 # 0) on the other hand, we have the seven
equations (5.1), (5.3), (5.4) and (4.8); but, as indicated above, the latter equation (4.8), is
redundant when 4 # 0.

The above observation also bears on the assumption (4.1). Without this assumption, the
conditions corresponding to (4.8), , 5 4 will also involve terms of the type p, ,/p, and the counter-
parts of (5.1), (5.3), (5.4) and (4.8); will lead to a system of equations in the variables p, , and
«l'Zs. The determinant of the coefficients of this system of equations is very complex to render
a solution and this is the main reason for our assumption (4.1).
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We now return to (5.8) and proceed to complete our solution of a,4. Thus, with the use of
(2.8); and (2.7), we first replace (5.8), by the equivalent relation

Qup,y = Qo F/g?'*'a/?y 1_1:7’ (5.10)

which represents a system of nonlinear partial differential equations of the first order in a,.
Since a, 4 is assumed to be of class C?, we have the integrability conditions

aaﬂ, ye = amﬁ,&y} (5.11)
which are both necessary and sufficient for the existence of solutions of (5.10). Next, substitute
(5.10) into (5.11) to obtain

gy (1_71'!7,6‘ - 1—1;8, y) + aﬂv(falz,y,& - FZB, y) +aaw(Frlr,8 f,gy - 1—1;7 Fg&) +aﬁv(f’:8 fgy _F:y _076) = 0.
(5.12)
With the help of (2.10), ¢ and the dual of (2.8),, the terms in (5.12) which involve the partial

derivatives of the Christoffel symbols of the second kind such as I'§, can be expressed in terms of
the partial derivatives of the Christoffel symbols of the first kind, i.e.,

Iy, s =A47(y, s—ThT,p) - I}, T (5.13)

Using the last result and recalling the formula (2.11) for the curvature tensor R, 4> We canreduce
(5.12) to _ _
aa,uA#vRvﬁé“y-l-aﬂyAﬂvRvaﬂy = O, (5.14)

or equivalently in terms of the Gaussian curvature of & to

K(a,, A&, 5+a,, APE,,) = 0, (5.15)
where in obtaining (5.15) use has been made also of the dual of (2.20) and (2.10),. Since the last
two results are obtained as a consequence of the integrability condition (5.11), it follows that the
functions a, 5 and 4,5 on the right-hand side of (5.10) must be restricted by either (5.14) or (5.15).
If the Gaussian curvature K is zero, the condition (5.15) is automatically fulfilled. On the other
hand, if K does not vanish, the functions a,, and 4,5 in addition to (5.8), must also satisfy the
three relations

a,,4"%,5+ a4, APE,, = 0. (5.16)
It is therefore clear that we need to consider two cases according to whether or not the Gaussian
curvature K is zero:

Case (I): K = 0. In this case, since (5.15) is satisfied, the system of differential equations
(5.10) is completely integrable in the sense of Eisenhart (1941, §23) and a solution for a,, can
be obtained in the form §

3
%111 B %cl{l * (27;—2_ ) (A3 Agg)~3[Ay2 cos V+ Atsin V]},

3
o %01{1 : (302_2_ ) (A1 dpo) H [ Ay cos V= Aksin V], (5.17)
Az 3

3
4y = 56 {Am + (%%2‘" ) (Ayy 4gp)¥ cos V},

1 The equivalence of (5.8), and (5.10) follows also from Ricci’s theorem (2.9),, as well as (2.6), and (2.7).
§ Details of the integration process are given in Appendix A.
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where the parameters ¢, ¢, are restricted by (4.11), ,, Vis defined by

o1 02
V= f(?l Xl(g; 02) d€+f 02X2(001, 77) d?] + ¢1’ (5.18)

A4 4
X, =47 [ — Ay 0+ A1p 1+ 3450 ( A22,1 —742‘1)] s
22 1 (5.19)

X, =471 [A22,1 —Ayp 5+ 34, (111422’2 - %}1—2)] >
22 11
¢, is a constant and the integration in (5.18) is from a fixed material point (0% = {6, ,62} to
a material point 6* = {6, 6?) in the two-dimensional region of space occupied by the surface 4.

Case (II): K # 0. In this case, using the expanded form of (4.8),, from the condition (5.16)
and the dual of (2.4), we can easily show that the solution sought is given by (5.7), which
states that the first fundamental forms of the initial surface & and the deformed surface 4 are
proportional to each other. Hence, we have

LemMA 5.1. When K # 0, the controllable deformations are so restricted that the initial surface & and
the deformed surface s are in conformal (angle preserving) correspondence.

Proof. The proof follows immediately from a theorem of differential geometry (see, e.g.
theorem 36.1 of Eisenhart (1941)) and the property exhibited by the solution (5.7).

It may be observed that the class of deformation indicated in lemma 5.1 imply, for example,
that a net of the coordinate curves which is initially orthogonal (4,, = 0) on the surface & will
remain so on J after deformation.

Solution for b, 5. Having obtained the above solutions for a, 4, we now turn to the determination
of the coefficients of the second fundamental form b, ; from the remaining equilibrium conditions
(4.8)5,6 and the compatibility requirements (2.18) and (2.19) in the deformed configuration.
However, we first show that the condition (4.8), is redundant when K # 0. For this purpose,
starting with (4.8)s and using (5.7) and (4.8);, it is easily seen that the parameter ¢, can be

expressed in terms of ¢; and ¢, as
¢y = 6165 (5.20)

rendering the condition (4.8), redundant. Keeping this in mind, in obtaining the solution for

b,z we employ (4.8);, (2.18) and (2.19) for all values of K, including K = 0, and then check a

posteriori if (4.8) is identically satisfied (i.e. redundant) also upon specialization to K = 0. A

summary of the solution for 4, classified according to certain range of values of K, is given

below but the details of the solution which are somewhat lengthy can be found in Appendix B.
(i) For K < ¢3/2¢,: In this case a solution for 5, 4 1s given by

7 = Hoot (=20 K1 (dy dup)HAsgcos? + Aisin T
- _ — 5.21
:[‘)12—22; = }{es + (83— 20, K)¥ (Ayy App)~#[Aypc08V — AdsinV]}, ( )
bys = $eg Asp + (6§ — 20, K)} (4, App)t cosT},
provided 4, , and K also satisfy the integrability condition
le,z = _2,1, (5.22)

21 Vol. 287. A.
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where X, = A—%[_A11,2+A12,1+%A12 (A22,1~_A11,1)+51(A11 K,z—Alz I(,l)]’
Ay Ay —2¢, K (5.23)
- A A4 (A1 K 3— 45, K ) '
T =A—%[A -4 14 ( 22,2 11,2) 1\A1g R0 — Aoy ,1]
2 22,1~ A1g,0 T 3410 p/ + 2. K
_ o _ 6 _
and where vV =J‘ X (&, 0% d§+f X(o0% 1) dy + & (5.24)
o0t 002

After substituting from (5.23) and using (2.11), (2.10), 5, the dual of (2.4), and (2.21),, we can

reduce the condition (5.22) to

4 _ _ _ _
+€§__—K[7fl (Aip Ky — 455 K 4) +‘j (e K1 —4,; K ,)

44K
’ —2¢,

+2(A11K2"A12K:1) 2+ 2(Az K,l—Am K,z),l]
4¢3

(0—3—2_0_) [A12 (K 5)%+ 435(K )2~ 241, K K 5] = 0. (5.25)
1
ii) For K = ¢2/2¢, > 0: In this case, a solution for 4, is given b
3/26, 2 ap 18§ vi
ba/)’ = 26314. af =F (101)’5 K%Aaﬂ (5.26)

(iii) For K > ¢3/2¢,: No solution exists in this case.

Next for later convenience, we specialize the general results stated in (i) and (ii) above to the
case in which the Gaussian curvature K vanishes, i.e. the initial surface & is developable. In
this case, if ¢; # 0, it is easily seen that the requirement K < ¢2/2c, is fulfilled and the criterion
(5.25) is satisfied. The corresponding solution stated below follows from (5.21).

(iv) For K = 0. In this case the solution for b, is given by §

byy[Ayy = $es{1 £ (Ayy Agg)~4[Agpc08 W+ Absin W1},

boal A = §e5{1 + (Ay; Agp) 4[4y cos W — Aksin W1}, (5.27)
byg = egf{Ays + (Ayy Agp)t cos W},

_ o 0 -
where W=V|g-o= fm X, (&, 6% d§+f02X2(001, 7) dy + ¢,. (5.28)

If, on the other hand, ¢; = 0 the requirement K = ¢}/2c, is satisfied and from (5.26) we have
bop =0 (K=0,¢5=0). (5.29)

It then follows that the solution (5.29) can be obtained also as a special case of (5.27) by setting
¢5 = 0. Therefore, when K = 0, we regard (5.27) as the solution of 4, for all values of ¢;.

With the use of the results (5.27) and (5.17), the deformation parameter ¢, in (4.8), after a
lengthy but straightforward manipulation can be expressed in terms of ¢,, ¢,, ¢5 as

2¢y _
o= daes |1+ (£)a(2)y (32-1) cos -3 (K =0) (5.30)
and this verifies that the condition (4.8)4 is also redundant for K = 0. The symbols ( + ), and
(£)p in (5.30) refer to the choice of signs in the expressions (5.17) and (5.27) for a,;and b,
respectively.
t The order of choice of sign on the right-hand side of (5.26) is for consistency in later developments.

§ The temporary notation W in (5.27) and (5.28) should not be confused with the use of the same symbol
for a different purpose in section 3.
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Before proceeding further, we state the following two lemmas:

LemwMma 5.2. If in a controllable deformation the Gaussian curvature of the initial surface & is a nonzero
constant, then it must be positive (K = c3[2¢; > 0) and & is a spherical surface.?;

Proof. Recall first that the above solution for &, has been classified according to (i) K < c§/2¢,
and (i) K = ¢}/2¢; > 0. In case (i) if K is a nonzero constant, then the criterion (5.25) reduce
to 44K = 0 and (since 4 # 0) this leads to K = 0 which is a contradiction. Hence, it is not
possible to have a nonzero constant in case (i). Turning to case (ii) it is at once evident that if
Kis a nonzero constant, it must be positive. This completes the proof.

LemMA 5.3. When K = positive constant so that & is a spherical surface, the controllable deformations
are so restricted that a net of orthogonal trajectories (4,5 = 0) on & deform into a net of lines of curvature
(@13 = by5 = 0) on 4.

Proof. The proof follows immediately from (5.7) and (5.26). This result is certainly stronger
than lemma 5.1 which holds for K 5 0.
We record now a summary of the results for 4, in a manner which will be particularly useful
in our subsequent developments:
((5.27) when K=0;
(5.26) when K = c3/2¢, > 0;
(6.21) when (i) K # constant,
Solutions of 4, are given by: (ii) K < cZ/2¢, and (5.31)
(iii) if criterion (5.22) is satisfied;
and no solution exists when
K > ¢3[2¢,.

It should be emphasized that the above solutions for 4, ; hold for all values of /2 or the surface
pressure p including p = 0. In the absence of the surface load (f® = 0), i.e. when the membrane
is deformed by edge loads alone, the various expressions in the solutions (5.27), (5.26) and (5.21)
simplify considerably and the appropriate results may be obtained from these solutions by
setting ¢; = 0, in view of lemma 4.1. One noteworthy result, in this connection, may be stated as

Lemma 5.4. If the membrane can be controllably deformed by edge loads alone, then the initial surface
must be either a developable surface (K = 0) or a surface of negative Gaussian curvature (K < 0).

Proof. Recall from (5.31) the classification of solutions for 4, , (whenever these exist) according
to (a) K = 0, (8) K = ¢2[2¢, > 0and (¢) K < ¢}/2¢c,. When the membrane is controllably deformed
by edge loads alone (f? = 0), the deformation parameter ¢; = 0 by virtue of lemma 4.1. Then,
the condition (4) gives K = 0 > 0 which is not possible and (¢) yields K < 0. Thus, the only
possibilities for the initial Gaussian curvature are K = 0 or K < 0. This completes the proof.

Before closing this section, for later convenience we combine the solutions obtained in this

section for a,; and 4,4 These solutions which involve the initial metric tensor 4,, and the

1 The term spherical surface is used here in the sense of Eisenhart (1941, §49). Thus, a spherical surface is one
whose Gaussian curvature is a positive constant. By contrast a sphere refers to a surface of constant radius, or
more precisely, a sphere of radius r is the set of all points at the distance r from a fixed point called the centre
of sphere (see also O’Neill 1966, p. 128).

21-2
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164 P. M. NAGHDI AND P. Y. TANG

constant deformation parameters ¢;, ¢y, ¢; depend also on certain range of values of the initial
Gaussian curvature K and may be summarized as follows:

(1) The solutions (5.17) and (5.27) when K = 0;

(2) The solutions (5.7) and (5.26) when K = ¢2/2¢, > 0; and

(3) The solutions (5.7) and (5.21) when (i) K # const., (ii) K < ¢3/2¢, and (iii) if
criterion (5.22) is satisfied.

(5.32)

6. STATIC CONTROLLABLE SOLUTIONS

With the use of (5.7) and (4.10) the deformation parameter ¢, can be expressed in terms of
¢; alone. To see this, we note from (5.7) that ay[A4;, = ay9[As = $¢1, a15 = (¢1/2) 4,5 and after
substituting this into (4.10) we easily obtain the result 2¢,—¢2 = 0. It then follows that the
invariants 7, and J, in (4.8), , can be expressed in terms of ¢, only when K # 0, i.e.

L =¢, I,=%2 (K#0,¢ >0). (6.1)
Further, in anticipation of certain results to be recorded below, we note that when K # 0 the
functions ¥, in (2.32) and ¢ in (2.29) may be regarded as different functions of ¢, alone. Hence,
in view of (6.1), = PUL) =) (K#0), (6.2)

dy’ _ogdl, ofrdl, _
de, a_Ilc—l_c_l-l_i‘)_Izc—lE; (L L)+ Wo(1y, 1), (6.3)
For later reference, with the help of (2.24), (2.31), (2.25), and (5.32), we also record below the
expressions for the mass density p, the resultants N%# and the assigned force /3 (or the pressure p)
appropriate for certain special cases which are of particular interest here:

(a) If the initial surface & is developable (K = 0), then the mass density p, the assigned force

f? per unit mas and the components of N*# are given by

2 \i
P pO (6‘2—6 ) ’ (6.4)
SP= =20 [(Py+6 W) + (1) (£)p Va2, —cB) ¥ cos (¢ — 61)]

N1 2 b ) .
and o= 20, +2p¢, Py {1 F ( Z_ ) (Aqy Ags) %[ A5 cos V— At sin V]},
1
22 2 3 X .
%72"2' = 2p¥; + 2pcy Tz{ (;2 ) (A1y App) 74 [Aspcos V+Absin V]}, (6.5)
1
3
N2 = 20, A1 4 200, ¥, {A12+ (20”2 ) (4142} cos V}.
1

Also, the arguments I, (y = 1,2) of the functions ¥, in this case are given by (4.8), , subject
to the restrictions (4.11), and (4.13).
() If the initial surface & is a spherical surface isometric} to a surface of sphere of radius
1/K3, the solution for p, f® and N*F is — (2/e))
- 1) Pos }

— — 6.6
f3=F2(2) (W, +c, W) = F2(2)% KEdy'[dey # 0 (6.6)

1 Recall that isometric surfaces are those whose first fundamental forms are identical after admissible coordinate
transformations (see Eisenhart 1941, p. 146).
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and Neb = 2p(W, + ¢, ¥,) A% = 2p(dyf’[de,) A*P, (6.7)

where the arguments 7, of the functions ¥, in (2.32) are given by (6.1) and where (6.3) has
been used in deriving the second of (6.7) and (6.6),.

(¢c) If & is a surface of variable Gaussian curvature (K # const.), which satisfies the criterion
(5.22), we have

p = (2cr) Pos } (6.8)
8= —2(¥y+ 6 ¥y) = —26,dy’[dey .
and Neb = 2p(W) + ¢, W) A*F = 2p(dyp’[de,) A8, (6.9)

where the argument 7, of the functions ¥, are again given by (6.1).

Let 0 = 6+(s), with s as the arc length, represent the parametric equations of a curve ¢ on 4
which may be identified with a closed boundary curve of 4; and let 4 and v denote, respectively,
the unit tangent and the unit normal to ¢. Then, recalling the expressions

Z_(ar ar)—%ar ( dmdav)—%dea

&) & \ PG TG T (6.10)
dorder\ -t do» 5 '
=a3><l= a,\v—d}-—(—ﬂ d—seaﬁa,

the edge loads which must be prescribed along the boundary curve 6* = 64(s) of 4 to maintain
the controllable deformations can be calculated by means of (2.23),.

Preliminary to our main objective and for ease of reference, we recall several well-known
theorems as follows:

THEOREM 6.1. Surfaces with constant mean and Gaussian curvatures must be planes, right circular
cylinders or spheres.}

THEOREM 6.2. (Weatherburn (1930), p. 194). Every surface of positive constant Gaussian curvature
K is isometric to a sphere of radius 1/K* > 0.

TuEOREM 6.3. (O’Neill (1966), p. 263). The only closed (complete) surface with a positive constant
Gaussian curvature is a sphere.§

In consequence of the form of the solutions for a,, and b4,, found in §5, with the help of
(B 1) of Appendix B, (2.17), and (2.19), we record the expressions for the mean and the Gaussian
curvatures of the deformed surface 4 as

(i];@:—fé if K =0
H = const. ={ ¢1—¢s ’ (6.11)
cafey, if K #0,
K= (2[c;)K (¢, >0), (6.12)

where ¢, = }¢3 for K # 0 and the redundant parameter ¢, is given by (5.20) for K # 0 and by
(5.30) for K = 0.

1 The proof of this theorem can be effected by means of the Gauss equation (2.19) and the Mainardi-Codazzi
equations (2.18). The theorem was stated and used by Ericksen (1954, p. 473). The terms cylinders and spheres
refer to sectors of cylindrical surfaces and surfaces of spheres, respectively.

§ The term complete is used synonymously with closed. For surfaces in &2, the terms complete and closed are
equivalent; see O’Neill (1966, p. 263).
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We now consider several useful lemmas which follow from the conclusions (6.11) and (6.12)
and the theorems 6.1-6.3. These lemmas, which have significant implications in regard to
controllable solutions sought, may be stated as follows:

LemMA 6.1. 4 sector of an initial undeformed surface can be deformed into either a plane or a sector of a
right circular cylinder if and only if the initial surface is developable, i.e. K = 0.

Proof. If K = 0, from (6.11) and (6.12), we have H = const. and K = 0 and by theorem 6.1
the deformed surface is either a plane or a right circular cylinder. Conversely, if the deformed
surface is either a plane or a right circular cylinder, then K = 0 and we see that K = 0 also and
the lemma is proved.

LemMA 6.2. A sector of an initial undeformed surface can be deformed into a sector of a sphere of radius
r if and only if the initial surface is a spherical surface (K = constant > 0) isometric to a sector of sphere
of radius R = r[(¢c,/2)% = (2¢1)%/]cs].

Proof. If the initial surface is a sector of a spherical surface, i.e. K = positive constant, then by
(6.12) and (6.11), K = constant # 0 and H = constant. Hence, by theorem 6.1, the deformed
surface is a sector of a sphere. Conversely if the deformed surface is a sphere, i.e., K = positive
constant, then K = positive constant by (6.12) and it follows from theorem 6.2 that the initial
surface is a spherical surface isometric to a sphere. The radius of the latter is obtained from
K = 1/R? = ¢3/2¢, and by (6.12) we have 1/r2 = 2/(c; R?) or r = (}¢;)}R and the results stated
in the lemma follow.

LemMa 6.3. The only closed surface which can be controllably deformed into a closed (i.e. complete)
sphere is a closed (i.e. complete) sphere.

Proof. The proof follows immediately from lemma 6.2 and theorem 6.3.

LemMA 6.4. The specification f = 0, i.e. the absence of surface load, implies that either the deformation
parameter ¢, = 0 and]or the deformed surface is minimal (H = 0) and conversely:

f=0<xc=0eH=0. (6.13)

Proof. It is clear from (5.20) and (5.30) that ¢, = 0 whenever ¢; = 0. It then follows from
lemma 4.1 that f = 0 if and only if ¢; = 0. The second part of (6.13), namely that ¢; = 0 if and
only if H = 0, follows at once from (6.11).

So far we have shown the existence of controllable solutions for three mutually exclusive
categories of initial surfaces, namely (1) developable surfaces (K = 0), (2) spherical surfaces
(K = positive constant) and (3) surfaces with nonconstant Gaussian curvature

K < ¢2/2¢,. (6.14)

In the last category the initial surface must be further restricted in that its 4,, and K must also
satisfy the differential criterion (5.22). Keeping the latter in mind, it is natural to inquire as to
the nature of the additional restrictions (if any) imposed by (5.22). More specifically, for given
deformation parameters ¢, and ¢;, we may ask the following two questions: () Do initial surfaces
exist whose metric tensor 4,, and Gaussian curvature K satisfy (5.22), in addition to the initial
compatibility equations (2.21), ,? (4) If the answer to (a) is in the affirmative, is the criterion
(5.22) satisfied by every surface of nonconstant Gaussian curvature in &3? In order to answer
the first question, we show that consideration of the differential criterion (5.22) does not lead to
nonexistence and conclude, therefore, that initial surfaces do exist whose 4,, and K satisfy
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(5.22). With reference to the second question, we observe that if the 4,, and K of all initial
surfaces in 6 (compatible with controllable deformations) satisfy the criterion (5.22) identically
then clearly (5.22) places no additional restriction on 4, ;and K; but, in fact, we show the contrary
and exhibit a further restriction imposed by (5.22) on the geometrical properties of the initial
surface.

For the purpose of providing the answers to the above questions, it will suffice to consider a
subclass of all possible initial surfaces in & consistent with the condition (6.14). In fact, for
convenience, we take this subclass of initial surfaces to be those with constant mean and negative
nonconstant Gaussian curvatures. We first demonstrate below that such surfaces exist without
integration of (5.22) and hence answer the first question. We further show that the initial constant
mean curvature cannot be prescribed arbitrarily and hence provide the answer to the second
question, which also implies the criterion (5.22) is not satisfied by every initial surface in &3.

Thus, let % be an initial surface whose mean and Gaussian curvatures are specified by

H=9, K<o, (6.15)

where 9 is an arbitrary prescribed constant.} Also, in order to simplify the analysis that follows,
let the convected coordinates 6% coincide with a net of lines of curvature coordinates on &.
Then, 4,, = B;, = 0 and the coefficients of the first and second fundamental forms are

_ 4, 0 _ AR, 0
A“ﬂ‘(o A) B“ﬂ‘( 0 Azz/fez)’ (6.16)

where R, and R, are the principal radii of curvature on &. With the use of (6.16), and (5.23),
the criterion (5.22) in lines of curvature coordinates reduces to

1 4, K 1 ¢; Ay K
oo i8] dilagei) -
{A2_|: 11,2 €§—2€1K ’2+ AE 22,1 6%"‘2611( 1 (6 17)
We also need to express the initial compatibility equations (2.21), , in terms of the principal

radii of curvature of &. Thus, using (6.16), (2.10), 5, (2.11), the duals of (2.4),, (2.6),, (2.8),
and (2.17),, we write (2.21), and (2.21), as

1 1/1 1
(E) 2+§(E_E2) (Indyy),. = 0,
)AL (6.18)
<E) 1+§<E_E) (Indgp),, =0
LA Ay,5) |
and R R, _EE[( At )’1+( i )2 (6.19)

respectively. By the definitions of the mean and Gaussian curvatures of &, i.e., the duals of
(2.17), we have

1/R, = H+ (H*~K)}, 1/R,=H-(H>-K)}, (6.20)
where

H:—K>0 (6.21)

and the nonnegative restriction in (6.21) is required if the solutions (6.20) for 1/R, and 1/R,
are to be real.

1 The constant 7 in (6.15) need not be confused with the temporary use of the same symbol for a different
purpose in §5.
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Before proceeding further, we need to examine if R, and R, as given by (6.20) are differentiable
everywhere or not. It is easily seen that these functions are differentiable everywhere except at
umbilics, i.e. at points where R, = R, or equivalently when H%— K = 0. Thus, we restrict our
attention to initial surfaces which are nowhere umbilic, i.e. to initial surfaces whose constant
mean and nonconstant negative Gaussian curvatures satisfy the condition

H2—K>o. (6.22)

It is evident that the requirements (6.15), , automatically fulfill (6.22); in fact, our choice for
the initial surfaces of constant mean and negative Gaussian curvatures was motivated in anti-
cipation of the requirement (6.22). However, as will become apparent below, the restriction
(6.22) will not be needed if either the initial surface & or the deformed surface 4 is a nondevelop-
able minimal surface, i.e.

1) either H=0, K
(1) either , # O,} (6.23)

(2) or H=0, K#0.
In the case (1) of (6.23), it follows from (6.21) that K < 0. In the case (2) of (6.23), on the other
hand, from the dual of (6.21) we have K < 0 and recalling (6.12) we again conclude that
K=1,K<0o.
Returning to the consideration of the initial surfaces specified by (6.15), we substitute (6.20)
into (6.18) and (6.19) and obtain the initial compatibility equations in the forms

H %(Hg_K_)-é(2I‘_]ﬁ,2_K2)+(ﬁ2—K)%(lnA11),2=0,} (6.24)
H,—}(H*— K)~%2HH,—- K,) - (H*- K)} (In4y) , = 0 '
= 1 [(Ass Aya,p
and - K = BYTS I:(—A—%)’l—l-(—z—g- P . (6.25)

We now proceed to obtain the restriction demanded by the differential criterion (6.17) when
the initial surface is specified by (6.15). Since the initial mean curvature His constant, H , = 0.
By using this result, the compatibility equations (6.24) reduce to

454 K,z = 2A11,2("72—K)s Az K,l = 2A22,1<"72—K)s ("72‘1? > 0). (6.26)

Introducing the expressions (6.26), ,into (6.17) and making use of (6.25) wherever the expression
for (— K) occurs, we obtain

|-t (61)2] [551521?+A:€§;T2—012)2{(Ajll’f)z+(Aji’;) ] =o. (6.27)

In view of (6.15),, (2.10),, (6.14), (4.11),, (6.26)5 and (4.9),, it is easily seen that each of the
terms (— K), 4%, (3 —2¢, K), ¢;, (92— K) and A,,, 4,, is positive and it follows that the expression
in the second square bracket of (6.27) is positive. Hence, we must have:

7% — 561 (csfe1)® = 0. (6.28)
Substituting for # and ¢;/c, from (6.15), and (6.11),, we finally obtain the relation
H=+ (3, H, (6.29)

which is a restriction on the initial mean curvature Hin a controllable deformation.
The foregoing development between (6.14) and (6.29) has been obtained for the subclass of
initial surfaces specified by (6.15). In view of (6.29), it is clear that the differential criterion
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(6.17) —which is deduced from (5.22) —cannot be satisfied identically and does not lead to
nonexistence of solution for K # constant. This provides the answer to the first question raised
earlier [following (6.14)]. It then follows that (5.22) cannot be satisfied identically by every
surface in &3 and this provides the answer to the second question. The results concerning the
two questions posed earlier may be summarized by the following.}

TuEOREM 6.4. In a controllable deformation sustained either by edge loads alone ( f® = 0) or by loads
which include a uniform normal pressure (f # 0), there exists some initial surfaces whose metric coefficients
and nonconstant Gaussian curvature satisfy the differential criterion (5.22).

With the help of the solutions for a,; and b,, obtained in section 5 and the various results of
this section, we are nowin a position to turn to our main objective and deduce the main conclusions
on the controllable solutions possible in every isotropic elastic membrane whose strain energy
function is characterized by (2.29); the membrane or a sector of the membrane may be subjected
to edge loads, as well as a uniform normal pressure measured either per unit mass or per unit
area. Our main conclusions are listed below as theorems 6.5-6.7 corresponding, respectively,
to three mutually exclusive cases in which K = 0, K = positive constant and K # constant as
listed also in (5.32).

THEOREM 6.5. 4 sector of an initial surface & can be deformed either into a plane in the absence of surface
loads (f = 0) or into a sector of a right circular cylindrical surface under loads which include a uniform
normal pressure (f3 # 0) if and only if the initial surface S is a developable surface. In this case, the controllable
solution is given by (5.17), (5.27), (6.4) and (6.5).

THEOREM 6.6. A sector of an initial surface S can be deformed into a sector of a sphere of radius r if
and only if the initial surface is a spherical surface isometric to a sphere of radius R = 1/K¥ = r[(}¢,)3.
The deformatior., in this case, is sustained by applicatior. of loads which include a nonzero uniform
normal pressure and the net of orthogonal trajectories on & deforms into a net of lines of curvature on 8. The
controllable solution is given by (5.7), (5.26), (6.6) and (6.7).

THEOREM 6.7. In the presence (or absence) of surface load prescribed by a uniform normal pressure, in
addition to edge loads, a sector of an initial surface & can be deformed into a sector of noncircular right
cylindrical surface with a nonzero constant mean curvature (or a nondevelopable minimal surface with a
negative Gaussian curvature) if and only if the initial surface is a nondevelopable surface (or a surface of
negative Gaussian curvature) with A,, and K satisfying the differential criterion (5.22). The resulting
deformation in both cases, i.e. in the presence or absence of the surface load, is in conformal correspondence
between & and 4 and the controllable solutions are given by (5.7), (5.21), (6.8) and (6.9).

We close this section with several corollaries which follow from the above theorems:

CoOROLLARY 6.1. Among all nondevelopable surfaces of constant mean curvature, only a nondevelopable
minimal surface is a possible initial surface in a controllable deformation maintained by edge loads alone.

Proof. In the absence of surface loads, H = 0 by lemma 6.4. It is then seen immediately from
(6.29) that H = 0 also and the corollary is proved.

COROLLARY 6.2. Among all surfaces of nonzero constant mean curvature H and negative Gaussian
curvature K, only those whose curvatures are specified by H = + (§¢)  H, K = ¢, K are possible initial

I A number of corollaries may be stated as a consequence of theorem. 6.4, but we postpone recording these
until later in this section.

22 Vol. 287. A.
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surfaces in a controllable deformation maintained by loads which may include a uniform normal pressure
(2 #0).
Proof. The proof follows at once from (6.29) and (6.12).

CoROLLARY 6.3. A nondevelopable minimal initial surface cannot sustain a nonzero uniform normal
pressure. However, it can be controllably deformed into another minimal surface under the action of edge loads
alone.

Proof. Suppose that the initial minimal surface can be controllably deformed in the presence
of a nonzero uniform normal pressure (f® # 0). Since the initial surface is minimal, A = 0 and
by (6.29) we also have H = 0. But, by lemma 6.4, the latter is equivalent to 3 = 0. This leads
to contradiction and the first part of the corollary is proved. On the other hand, under the action
of edge loads alone, we have shown that // = 0 when /3 = 0 and this establishes the second part
of the corollary.

COROLLARY 6.4. The only complete (i.e. closed) surface which can be controllably deformed into a
complete sphere is a complete (closed) sphere. The deformation, in this case, is sustained by application of a
nonzero uniform normal pressure alone.

Proof. The proof follows immediately from theorems 6.6 and 6.3.

7. SOME ELASTIC MEMBRANES WITH VARIABLE GAUSSIAN
CURVATURES IN THE UNDEFORMED STATE

We consider in this section some explicit results for three cases of controllably deformed elastic
membranes with the following specifications:

(A) Only the initial surface is in the form of nondevelopable surface of revolution.

(B) Both the initial undeformed and the deformed surfaces are in the forms of nondevelopable
surfaces of revolution.

(C) Only the deformed surface is in the form of nondevelopable surface of revolution.

Although in the case (C) only the deformed surface is specified, it should be clear from (6.12)
that even in this case the initial surface must have a variable Gaussian curvature. Moreover, it
should be noted that the deformed surface in the case (A) and the initial undeformed surface
in the case (C) are not necessarily surfaces of revolution.

In each of the above three cases, we introduce suitable lines of curvature coordinates on both
initial and deformed surfaces and make use of the general theorems of § 6 to obtain the desired
controllable solutions. In the two cases (A) and (C) the explicit results are obtained without
integrating the differential criterion (5.22) but in one case, namely (B), (5.22) is actually
integrated.

(A) A membrane with its initial configuration in the form of a surface of revolution

Let the initial surface & be generated by the rotation of a plane curve C through an angle
I' £ 27 about an axis in its plane. This curve, called a meridian curve, has no double points and
does not meet the axis of revolution except possibly at one or both of'its end points. Let (R, @, Z)
be a fixed system of cylindrical polar coordinates with the Z-axis being coincident with the axis
of revolution. Then, the meridian curve C can be parameterized by

R=R(S), Z=2Z($), }

(R)2+(Z)2 =1, () =d()/dS, (7.1)
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where the parameter § chosen as the arclength measured from a fixed point along C is specified
by (7.1)s. It is not difficult to seee that the meridian curves (i.e. the S-curves) and the parallels
(i.e. the @-curves) form a net of lines of curvature coordinates on . We introduce now the
surface coordinates Y= = (S, @) on &, and denote by A, and 4,, the base vectors and the
metric tensor associated with the Y*-coordinates. Further, we select the values of Y* of a typical
material point in the initial undeformed configuration to be the convected coordinates at that

point so that 0% = Y= = (S,0) on . (7.2)
With this choice, 4, = A,, 4,, = 4, s> and the initial metric tensor 4, and the initial Gaussian

curvature arej {0

A= (0 122)’ KE=—R'R (R>0). (7.3)
The differential criterion (5.22), or its alternative (6.17), now reduces to

$R{ln| R* 02+201—2—” ,='y R”>——c§—R (7.4)
2 3 1 R s 26‘1 4] .

where v is an integration constant. The restriction indicated by the inequality (7.4), follows from
(7.8), and the condition K < ¢§/2¢, in the solution (5.21) [see also (3) in (5.32)]. With the help
of (7.8), , and (7.4) the solutions (6.7) and (5.21) yield

1 0
Gup = Y0r (O R2) (R > 0) (7.5)
and by = ¥es £ (3 +2¢, R"[R)%sin TV},
boy = 3Ry T (c2+ 26, R"[R)bsin 7}, (7.6)
by = + 3R(c3+2¢, R"|R)} cosV,
where now V = (¢,—76,) +y0O (7.7)

and 0, is a fixed value along the parallels ® with the range 0 < @ < I' < 2.
Since the absence of surface load is equivalent to setting ¢; = 0 by lemma 6.4, the criterion
(7.4) can be further reduced to
3R[In (R3R")]' =y (R" > 0). (7.8)
Moreover, in this case the coefficients of the first fundamental form are still given by (7.5), but
the expressions in (7.6) simplify and read as

by = £ (c R"[2R)}sinV, by, = F R¥(c, R"[2R)}sin V’} (7.9)

by = + R(c; R"[2R)} cos V.

The condition (7.4), is a restriction for a sector of surface of revolution of variable Gaussian
curvature and its right-hand side represents an arbitrary constant of integration. For a complete
membrane of revolution, the surface % is complete, i.e. I" = 27, and the constant y must then
be an integer. The latter can be effected by imposing on (7.6) and (7.7) the periodicity condition

R(S,2n) = R(S,0), (S,2n) = (S, 0), (7.10)

according to which the position vectors of any point of the 2x-meridian on % coincide with those
of the zero-meridian.

1 In order to ensure the positive definiteness of 4,4, we require that R > 0 throughout#. This excludes our
consideration of what may happen at the poles of the surface of revolution at which points R = 0.

22-2
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The foregoing results can be summarized by the following two corollaries to theorems
6.5-6.7:

CoROLLARY 17.1. Among all nondevelopable surfaces of revolution, only those generated by the meridian
curves specified by (7.1) and restricted by (7.8) are possible initial surfaces in a controllable deformation
maintained by edge loads alone. Moreover, the controllable solutions result in deformed minimal surfaces
characterized by (7.5) and (7.9).

CoOROLLARY 17.2. Among all nondevelopable surfaces of revolution, only those generated by the meridian
curves specified by (7.1) and restricted by (7.4) are possible initial surfaces in a controllable deformation
maintained by loads which include a uniform normal pressure (f2 # 0). Moreover, the controllable solutions
result in deformed surfaces of constant mean curvature characterized by (7.5) and (7.6) with the deformation
parameters ¢y (> 0) and cq restricted by (7.4),.

The results contained in the corollaries 7.1 and 7.2 are valid for initial surfaces of revolution
which may be either (i) a sector of nondevelopable surfaces of revolution or (ii) a complete
nondevelopable surface of revolution. These results, therefore, appear to slightly enlarge the
previous controllable solutions for elastic membranes of revolution in which both the initial
and the deformed surfaces are taken to be complete surfaces of revolution (see Adkins & Rivlin
(1952) and Green & Adkins (1970), ch. 4).

(B) A membrane with both its initial and deformed state in the forms of surfaces of revolution.

We now make an additional assumption and as in Green & Adkins (1970, ch. 4) we suppose
that the deformed configuration of the membrane represented by 4 is also in the form of a surface
of revolution. Let (r,0,z) be a system of cylindrical polar coordinates referred to the same
cylindrical polar reference frame as (R, 0, Z), and let s denote the arclength measured along the
meridian curve ¢ on 4, which was initially the curve C on &. Then, ¢ can be parameterized as

r=r(s), z=2z(s),

7.11
CPEr=1, () =S 71

Also, as in Green & Adkins (1970, ch. 4), we assume that the deformed surface 4 has the same
axis of revolution as} %, and that for each @ the meridian curves on.# are deformed into corres-

ponding meridians on 4, so that§
0=o. (7.12)

We introduce now the surface coordinates
¥ =(50) on 4 (1.13)
and consider the deformation described by the transformation
y* = y*(YF), det[0y*[0YF] # 0 (7.14)
or equivalently y* = y*(0F), det[0y*[00F] # O, (7.15)

1 This implies that the z-axis is taken to be coincident with the Z-axis, since earlier in this section the Z-axis
was taken to be coincident with the axis of revolution of .
§ Such an assumption could be introduced even if.# and J are not complete surfaces of revolution.
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in view of (7.2),. Let @, denote the base vectors associated with the y*-coordinates on 4. Then,
under the transformations (7.15), we have
. 00f oyt
aa=@;aﬂ, a“=@;aﬂ
Further, it follows from (2.2),, (2.3) and (7.16) that the unit normal @, associated with the
y*-coordinates is related to a; by}

(7.16)

_ g, g = |det(@e[00)]
a3 = pas, ['= 35 (Qy=[36) ~ t1. (7.17)

Also, let @, ; and b, stand, respectively, for the coefficients of the first and the second funda-
mental forms of 4 associated with the y*-coordinates. Then, by (7.11) and (7.13),

-
daﬂ=((1) 702) 17“,,=(_0z_‘ 0) (r > 0) (7.18)
Z

and we also note the transformations

Jy” oy® Oy Oy’
Gup = 3gaogr e ber = Magiggstn (7.19)

between a,; and 4, , and between b, and b, .

We now restrict attention to the special case in which 4 is a complete surface of revolution.
With the help of the transformations (7.15),, the assumption (7.12) and use of (7.5), (7.6) and
(7.18), comparison of the left-hand and the right-hand sides of (7. 19) results in

O 0 s ds ol r_
O~ 7 a8 ds” ’ R_ 2
t1

G1—YO,+v0 =2nn+in (n=0,
( R//)% B . RN (7.20)

cst (3+20 5 _:“(251)2m3

" % 1_ 7\ 9 %
c3F (‘ezx + 251%) = /"(2”1)%[#13

where the arclengths s and § have been assumed to increase together and this enables us to take

» £2

positive square roots of the expressions from which (7.20), ; are obtained. Since the right-hand
side of (7.20), has a fixed value for each n and since (7.20), must hold for all @, it follows that
under assumption (7.12) the coefficient of @ in (7.24), must vanish. Hence, if 4 is a complete
surface of revolution, we must have

y=0, ¢=2nn+dn (n=0,+1, +2,...). (7.21)
By the definitions of the principal extension ratios A,, namely
Ay =ds/dS, A, =7[R, (7.22)
it is clear that A, are constants throughout 4 in view of§ (7.20), 3. The explicit values of A, can
be readily calculated with the use of (7.20), 3 but will not be recorded here.

+ The possibility for a different choice of signs in (7.17), is introduced for later convenience and in connection
with the examples discussed in §8.

§ The fact that the principal extension ratios are constants is introduced as an additional assumption in
existing solutions; see Green & Adkins (1970, ch. 4).
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In view of (7.21),, the differential criterion (7.4) can be integrated to yield
2, R" +c3R—y, R-3 = 0, (7.23)
where 7, is an arbitrary constant of integration. Next, recalling (7.1), 4, we write
R" = d?R[dS? = dR’[dS = 4(d/dR) (R")?, R’ =dR/dS. (7.24)

Using the last result, from (7.23) we calculate an expression for (R’)2 and by taking its square
root we obtain d(R?)

{=(1]26,) [, — 2, RE+ 3RO —

where 7, is an arbitrary constant of integration and where R and § are assumed to increase
together. When the surface load f3 # 0, or equivalently ¢; # 0 by lemma 4.1, a further integra-
tion of (7.25) yields

2ds, (7.25)

R? = 0222_'_ (ny— 71 c3)% s1n(2 )%(2S+773) (7.26)

where 74 is another constant of integration. It is clear from (7.26) that in order for R to be real,

we must require M—7,3 > 0. (7.27)
With the help of (7.20), 5, (7.26) provides an expression for 7 in the form

r? = Ly+ L,sin (2Es+ a), (7.28)

where Ly = (a1/263) m3—m3)t, Ly = (cof28) 10, E =5y, o = (c3/(201)F) 75. (7.29)

The mean curvature of the surface 4 can now be calculated from (2.17),, (7.18), (7.11); and
(7.28). Thus

H = + }[1+2EL, sin (2Es + «)] [ Ly + L, sin (2Es + ) — E2L3 cos? (2Es + )]}, (7.30)

Since both (7.30) and (6.11), must hold simultaneously, by equating them and after using

7.29 we have
( )1,2,3 N2 — 9,63 = 20, ¢, — 3. (7.31)
With the use of (7.31) and (7.29)s, the constants L, and L, in (7.29), , can be rewritten in terms
of only two constants £ and F as follows:}

1—4EF 1-2EF 1 ( _27_2)

> L= F 2)-

2 __ — = ——
Li= 2FE2 2F

(7.32)
Moreover, in view of (7.31) and the condition (7.27), it follows that the constants £ and / must

be restricted by the inequality 4EF < 1 (7.33)

which also ensures that 7 is real.

The relation (7.28) between r and s, along with (7.11), 5, define a meridian curve on 4.
Similarly, the relation between R and S for a corresponding meridian curve on % can be obtained
directly from (7.28), (7.20), 5 and (7.22), as

= (2)e) {Ly+ Lysin[(26) ES + ]} = (1)) [Ly+ Lysin (22, ES+)].  (7.34)

With the use of (7.34), (7.8),, (7.29)3 and (7.32), ,, it can now be verified that the requirements
(7.20); ¢ are identically satisfied.

§ The constants £ and F in (7.32) correspond to 4 and B of Green & Adkins (1970, ch. 4).
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Consider next the special case in which the surface load f; = 0 or equivalently when the
parameter ¢g vanishes. In this case, (7.25) reduces to}

-4

[17-2122 - -’7—1] d(R?) = 2dS. (7.35)
¢y 2¢,

Before integrating (7.35), it is expedient to define the minimum value of R, or equivalently

the minimum value of  in view of (7.20),;. Assuming that the arclength s is measured from the

point at which 7 assumes its minimum value, we define the minimum value of rat s = 0 by

o = Tmin = 7(0). (7.36)

Now in order for (7.11), to have a minimum at s = 0, we must have dr/ds = 0 and d?/ds? > 0
at that point. Keeping this in mind, as well as the result that when ¢3 = 0 the mean curvature
H = 0 also by lemma 6.4, with the help of (7.8),, (7.20), 3 and (7.22) we integrate (7.35) to

obtain
r2=s24+13 R?2=S8%2+13/A3, (7.37)

7, =43>0, 9,=1¢ >0. (7.38)

The result (7.37), identically satisfies both of the requirements (7.20) ¢ with ¢; = 0. It should
also be noted that (7.37), ,, regarded as solutions for 4 and &, represent catenaries with para-
meters r, and 7,/A; with their directrixes coinciding with the axis of revolution (r = 0) of the
membrane.

The results of the present subsection (B) are obtained under the assumption that the deformed
surface is also a complete surface of revolution which is restricted by (7.12) and this, in turn,
requires the vanishing of the constant 7 in the differential criterion (7.4). In this way, we have
recovered all of the previously known results (see Green & Adkins 1970, ch. 4) for controllable
solutions of a membrane of revolution with both of its initial and deformed states in the forms
of complete surfaces of revolution.§ By contrast, in carrying out the development of subsection
(A) only the initial surface was assumed to be in the form of a surface of revolution and this
resulted in a deformed surface characterized by (7.5) and (7.6) including the case in which
v # 0in (7.7). In this connection, it should be noted that the difference between the solution
with y # 0 and that for which y = 0is nontrivial in the following sense: the difference between
the two categories of controllable solutions is not merely a deformation which could result from
a rigid body displacement of the deformed surface in the first category into the deformed surface
of the second category.

(C) A membrane with its deformed configuration in the form of a surface of revolution

We consider now a third class of elastic membranes whose deformed states are in the forms of
surfaces of revolution but we do not invoke the assumption (7.12).| Thus, given any non-
developable initial surface, we show that the meridian curves (7.28) and (7.37), generate, in
fact, all possible controllably deformed surfaces of revolution.

+ The condition (7.35) may also be obtained directly from. the criterion (7.8), with y = 0.

§ We have not recorded here the explicit expressions for p, f3 and N8 but these can be easily calculated from
(7.28) and (7.34) when /2 % 0 and from (7.37), , when 3 = 0.

|| Recall that the assumption (7.12) implies that a net of lines of curvature on & in the form of a sector of
surface of revolution transforms into a net of lines of curvature on d.
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Let the coordinate curves on 4 be specified by the surface coordinates y* as defined by (7.13)
and let the values of y* be identified with those of the convected coordinates 6* in the deformed
configuration so that now “—ye = (5,0) on 4. (7.39)

Inview of (7.39) and recalling (7.13) and (7.18), it follows that a, ; and b, are the same as those
given by d,, and b, in (7.18) with r and z defined by (7.11). The coefficients of the second
fundamental form, of course, must be compatible with those in (5.21). Moreover, since by (6.11),
the mean curvature // must be a constant, with the help of (2.17),, (7.18) and (7.11); we have

_G_, [1=(r)]
H=2=t o oyt (7.40)
Also, by (5.7) and (7.18),, the coeflicients of the first fundamental form of the initial surface are

2/1 0

r2

and we recall that both 4,; and B, ; must satisfy the differential criterion (5.22) and the initial
compatibility requirements (2.21); ,.
Using (7.41), from a comparison of the expression for 4, as given by (7.18), and (5.21),

we find V=2nnt+tidn (n=0,+1,+2,..) (7.42)

and this leads at once to X, =0, (7.43)

in view of (5.24). Hence the criterion (5.22) is automatically satisfied. From (5.23), (7.41),
(6.12) and the dual of (7.3),, it follows that (7.43) with « = 1 is identically satisfied while (7.43)

with o = 2 reduces to 2 o
{1nr4[(—§) +—]} = 0. (7.44)
¢y r
The first integral part of (7.44) yields
112
2¢y1"" +[63 (g) ] r—v;lc—lr-?' =0, (7.45)
01 2

where #, is an arbitrary constant of integration introduced earlier in (7.23).} Observing that
(7.45) has the same form as (7.23), the integration of (7.45) can be carried out in a similar way.
Thus, with the help of the dual of (7.24),, (7.20),5 and (7.40), we can easily integrate the
differential equation (7.45) in the form (7.28) for nonvanishing ¢; or in the form (7.37), when
¢s = 0. With these results, as well as (7.41), (7.42), (6.12), the dual of (7.8), and (7.11),, it is
a simple matter to show that 5y, and 4,, as given by (7.18), are indeed compatible with the
corresponding expressions in (5.21).

We now turn to an examination of the compatibility equations of the initial surface. With the
use of (6.12), (7.41), (5.8),, the expressions for a,; as given by (7.18), and the dual of (7.3),,
as well as the derived expressions for 7 in the forms (7.28) and (7.37),, we deduce the following
reduction of the initial compatibility equations (2.21), and (2.21),:

(i) When ¢3 # 0 (or equivalently f3 # 0) to the set

2F?

BBy By ==Lyt Lisinf+
1

2__J2
Li— L ] (7.46)

Iyt Lising

1 Strictly speaking a different constant of integration, say #,, should be used in (7.45). For later convenience,
however, we use the same arbitrary constant 7, as in (7.23).
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_ EL cosp
and Byyo = By + L+Lsnpl®
EL cosp (7.47)
By,1— (ELy cos f) By, — mf}m = By,
where p=2Es+a (7.48)
and E and « are defined by (7.29), ,.
(ii) When ¢3 = 0 (or equivalently f3 = 0) to the set
22
By, By, — B}, = ~ D (sz-(i)-rﬁ) (7.49)
' s
and Byy,2 = Biay +m312,
0
(7.50)

322,1“5311‘}2—_‘:_7(2)322 = By 5
where 7, is defined by (7.36).

The integration of (7.46)—(7.50) is, in general, quite difficult but it can be accomplished
in special circumstances. We do not pursue the matter here any further, but note that if attention
is restricted to such controllable deformations that the net of lines of curvature coordinates on 4
result from a corresponding set of lines of curvature coordinates on &, i.e. if 4,, = By, = 0,
then the differential equations (7.46)—(7.50) can be integrated in a straightforward manner
although the process of integration is rather lengthy.

We close this section with a summary of the conclusions reached in the present subsection
(C) by the following two corollaries to theorems 6.5-6.7:

CoROLLARY 7.3. In a controllable deformation by edge loads alone, the only nondevelopable surface of
revolution in the deformed state is a catenary generated by (1.37), provided that the first and the second funda-
mental forms of the initial surface are characterized by (7.41) and the solutions of (7.49)—(17.50).

CoRrOLLARY 7.4. In a controllable deformation in which the loads include a uniform normal pressure
(f® # 0), the only nondevelopable surface of revolution in the deformed state is that generated by the meridian
curve ('1.28) provided that the first and the second fundamental forms of the initial surface are characterized
by (7.41) and the solutions of (7.46)—(7.47).

8. SEVERAL FAMILIES OF SOLUTIONS. AN ALTERNATIVE
DESCRIPTION OF CONTROLLABLE DEFORMATION

We consider in this section some special cases of the general results of § 6 and obtain alternative
descriptions of the controllable solutions when each of the two surfaces & and 4 has a simple
shape in the form of a plane, a right circular cylinder or a sphere. In particular, we discuss five
families of controllable deformations for which the initial and the deformed surfaces are specified
as follows:

Family 1. Both the initial surface & and the deformed surface 4 are planes.

Family 2. The initial surface & is a sector of a right circular cylinder of radius R (> 0) and 4
is a plane.

Family 3. The initial surface & is a plane and 4 is a sector of a right circular cylinder of radius
r (>0).

23 Vol. 287. A.
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Family 4. Both surfaces % and 4 are sectors of right circular cylinders. This includes the case
of complete right circular cylinders, i.e. tubes.

Family 5. Both surfaces % and 4 are sectors of spheres (or complete spheres) of radii R and 7,
respectively.

The fact that both the initial and the deformed surfaces of the membrane are prescribed
enables us to introduce suitable surface coordinates on the surfaces of the families 1-5 above,
which surface coordinates collectively will be designated by Y* on% and by y* on 4. The deforma-
tion of & into 4 may then be described by a transformation of the form (7.14). Such an alternative
description, as it will become evident presently, permits easy interpretation of our general
results especially when each of the two surfaces# and 4 has a simple shape.

In what follows, both the initial and the deformed configurations of the membrane will be
referred to a common reference frame which we take to be a set of fixed rectangular Cartesian
axes. With reference to the initial and deformed surfaces of the five families of controllable
deformation specified above, we also introduce the rectangular Cartesian, the cylindrical polar
and the spherical polar coordinate systems in the initial configuration of the membrane and
designate these by Y? = (Y, Y2 Y3) = (Y,Z,X), Y! = (0,Z,R) and Y? = (0, ®, R), respectively.
Similarly, the corresponding coordinate systems in the deformed configuration will be denoted
by y* = (y%, y% 43) = (y,2,%), y* = (0,2,7) and y* = (0, ¢,r), respectively. The common reference
frame, as well as the initial and the deformed surfaces, to within a rigid body displacement of
the deformed surface may be so located that the origin of this frame is on the same common
axis of the initial and the deformed cylindrical surfaces, and is also at the same centre of the
initial and the deformed spherical surfaces. Moreover, when the Z-axis is coincident with the
axis of cylindrical surfaces, the (¥, Z) and the (y, z) coordinate planes coincide, respectively, with
the plane surface in the initial and the deformed configurations of the membrane.

Let E; = (J, K, I) denote the unit base vectors along the (Y, Z, X)-coordinate axes. Then,
the surface coordinates in the initial configuration, along with the position vector and the first
and the second fundamental forms 4,4, B, ; of & may be summarized as follows:

(1) When & is a plane, Y»=(Y,Z), R=YJ+ZK, (8.1)
- 1 0 _
a,,- (0 1) =3,, B, =o. (8.2)
(2) When & is a right circular cylinder,
Y*=(0,Z), R = RcosOI+RsinOJ+ZK, (8.3)
_ R 0 - —-R 0
Aaﬂ=(0 1), Ba/,=( . 0). (8.4)
(3) When & is a sphere,
Y* = (0,9), R = Rsin®cosPI+ RsinOsin ®J+ R cos OK, (8.5)
—- R? 0 = —R 0
Aap = (0 R2sin2@)’ Bay = ( 0 —Rsinm)' (8.6)

Similarly, with reference to the present deformed configuration, the surface coordinates, the
position vector and the first and the second fundamental forms d,, b, 5 of 4 may be summarized
as follows:

(1) When 4 is a plane, y* = (y,2z), r=yJ+:zK, (8.7)

daﬁzé‘aﬂ, b—a/i’: 0. (8.8)
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(2) When 4 is a right circular cylinder,

y* = (0,z), r=rcosOI+rsinfJ+:zK, (8.9)
_ 2 0 - —-r 0
Aop = (0 1} = const., b,,= ( 0 0) = const. (8.10)
(3) When 4 is a sphere,
y* = (0,¢), r =rsinbcos@l+rsinbfsin¢J+rcoslK, (8.11)
_ r? 0 - -7 0
Gap = (0 rzsinzﬁ)’ bap = ( 0 —rsinzﬁ)’ (8.12)

We now choose the values of the Y* coordinates, i.e. the surface coordinates (8.1);, (8.3),
and (8.5),, of a typical point of & to be the convected coordinates at that point so that (7.2),
holds. Then, 4, s B, s = By p; and, by virtue of theorems 6.5 and 6.6, the expressions for
@4ps bypin the 6% coordinates can be calculated from (5.17), (5.7), (5.26) and (5.27), using also
(8.2)4, (8.4), and (8.6),. This leads to the results

ayp = const., b,, = const. (8.13)

for any 4 in the families 1-4 and to the results

r2 0 Fr 0
Gap = (0 r?sin? @)’ bap = ( 0  Frsin? @)’ (8.14)
r= (3R

in the case of family 5. Next, we suppose that the deformation of the membrane is characterized
by (7.14) or equivalently by (7.15) in view of (7.2), and recall the transformation relations
(7.19),,, which must be satisfied by the functions a, s, b, s, @,p, b, 4. Inasmuch as these functions
are known explicitly, the transformation relations (7.19), , yield a system of partial differential
equations for y* in terms of 6%, The solutions of these differential equations then determine the
desired deformations.

Ifin the families 1—4 the surface 4 is a plane or a right circular cylinder, then it is easily seen
from (8.8), (8.10), (8.13) and (7.15) that the constant values of @, b,, in the y7-coordinates
transform as constant values for a,4, b, in the 67-coordinates. The corresponding Christoffel
symbols calculated from a,,(y?) and a,4(67), respectively, are identically zero; and, from the
well-known transformation law for the Christoffel symbols (not recorded here), we deduce the
differential equations

azyr
spiag = O (8.15)
A solution of (8.15) is y* = c}0F +c*, (8.16)

where ¢% and ¢* are integration constants. Having obtained (8.16) and remembering that both
b, and b,, are constants, we can easily verify that (7.19), yields no new information on the
transformation (7.15). Replacing 6/ in (8.16) with Y7 in view of (7.2), and observing, with the
help of (8.7), and (8.9),, that ¢* correspond to rigid body displacements, we finally obtain the
expression

y*=c3Y? (detc§ # 0), (8.17)
which characterizes the controllable deformation for the families 1-4.

23-2
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In the case of family 5 in which 4 is a sphere, it follows from (8.12) and (8.14), , that both the
y'-curve and the #'-curve on 4 form the great circles of the same sphere. Hence, we may identify
the y!-curve and the 6'-curve on 4 and measure the square of the element of arclength ds along
the y* (or 6*) coordinate line by

dsty = r*(dy")* = r(d6")2. (8.18)
It follows from the above expressions that
gl =k, + 0, (8.19)

where £, is an integration constant. In view of this result, as well as (8.12) and (8.14), the solutions
of the differential equations obtained from (7.19), , are

Pr=nmt0, y2=Fk+60% (n=0,+1,...), (8.20)

where £, is a constant of integration. Substituting (7.2), into (8.20) and examining the resulting
equations with the help of (8.5); and (8.11),, we see that £, = 0 and, to within a rigid body

rotation, (8.20), , reduce to f=Tiorn—Y, 4= 7" (8.21)

We are now in a position to assign some interpretations to the deformations characterized by
(8.17) and (8.21). For family 1, the coefficients ¢} and ¢3 in (8.17) represent stretchings in the Y-
and the Z-coordinate directions, while ¢} and ¢} represent shearings along the Y- and the Z-
coordinate directions. For family 2, ¢{ describes straightening about the Z-coordinate direction,
¢3 characterizes extension along the Z-axis, while ¢} and ¢} represent shearing deformations along
the Y- and the Z-coordinate directions, respectively. For family 3, ¢} and ¢} represent bending
and torsion about the Z-axis, while ¢} and ¢ are measures of shearing and stretching along the
Z-axis. For family 4, the physical meanings associated with ¢; and ¢} are the same as those of
family 3. In addition, when & and 4 are sectors of cylinders in family 4, ¢ corresponds to
straightening and/or bending about the Z-axis and ¢% represents shearing along the Z-coordinate
direction; but, when & and 4 are tubes in family 4, then ¢j must be further restricted by

cd=%1, =0 (3+#0), (8.22)

which includes the case of a tube turned inside out and subjected to no shear. The change of
radius from R to 7 in family 4 represents the amount of expansion of cylindrical surface #, while
the deformation (8.21) along with (8.14), characterize the expansion or inversion of spheres
in family 5.

It is convenient to summarize the results obtained so far in this section by the following two
lemmas:

LemmMa 8.1. Suppose that each of the two initial surfaces & and the deformed surface s is either a plane
or a right circular cylinder and suppose that the surface coordinates on S and s are specified by (8.1)4, (8.3),,
(8.7), and (8.9),. Then, the general results of theorem 6.5 given by the solutions (5.17) and (5.27), or
alternatively (8.13), 5 after using (7.2),, are equivalent to the deformation (8.17).

LemMmA 8.2. Suppose that both S and s are spheres and that the surface coordinates of these surfaces are
specified by (8.5), and (8.11),, respectively. Then, the general results of theorem 6.6 given by the solution
(5.7) and (5.26), or alternatively (8.14), , after using (1.2),, are equivalent to the deformation (8.21).

To complete the present development, we need to calculate the expressions for the mass density
p, the strain invariants, the components N*# and the uniform normal pressure f? in terms of
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the alternative kinematic descriptions for each of the five families of controllable deformations
listed earlier in this section. Since the calculations are straightforward, we omit details and
record only the final expressions. Thus, remembering also the above interpretations which can
be associated with the coefficients ¢}in (8.17), we may summarize the results as follows:

Family 1-Stretching and shearing of a plane & into another plane 8.7 The initial and the deformed
membranes in this family are specified by (8.1), and (4.1) and by (8.7), and

p = po|detcy| L, (8.23)
respectively. The deformation is described by (8.17) with the surface coordinates y* and Y=
specified by (8.7), and (8.1), respectively. In view of the particular choice of the convected

coordinates specified by (7.2); and (8.1),, 4,4 and B, of the initial surface are given by (8.2),
while @, 4 and b, of the deformed surface are calculated to be

Aup = 0,,chch =cych, byp=0. (8.24)
The corresponding expressions for N*# and f? are
Na# = 2p(P, 848 +2¥,c5cy), f3=0, (8.25)
where the arguments I;, [, of the functions ¥, are calculated to be
I = 8488y, c5c’y = clel, (8.26)

I, = 6058, 8, clychef ¢ = chchey ey
Family 2 - Stretching, shearing and straightening of a sector of a right circular cylinder of radius R (> 0)
into a plane. The initial and the deformed membranes in this family are specified by (8.3), and

(4.1) and by (8.7), and p = poR|deteg|1, (8.27)

respectively. The deformation is described by (8.17), together with (8.7); and (8.3),. In view of
the particular choice of the convected coordinates specified by (7.2); and (8.3),, 4,5 and B,
of the initial surface are given by (8.4), while a,; and b, of the deformed surface are found to
be the same as (8.24). The corresponding expressions for N*# and f? are

1 210 cl‘y ¢ 22
N = R—z-(‘;”1+2-7€7¥’2), N2 = 2p(W, + 261 V),
. (8.28)
N2 = N2 = -Rgc;';c;"‘”z, =0,
where the strain invariants which occur in the arguments of the functions ¥, are
4 Y Y\ 2 2
n=2dvqa, 1,- (B v (L) + @ar (8.29)

Family 3 - Stretching, shearing, bending and torsion of a plane into a sector of a right circular cylinder
of radius r ( > 0). The initial and the deformed membranes in this family are specified by (8.1),

and (4.1) and by (8.9), and p = por-t| detes|, (8.30)
respectively. The deformation is described by (8.17), together with (8.9); and (8.1),. In view of
the choice of the convected coordinates specified by (7.2), and (8.1), 4,4 and B, ; of the initial
surface are given by (8.2), while a, 5 and b, 4 of the deformed surface are calculated to be

|det cj|
=41. 8.31
detcjy — (8.31)

Qup =120+ Coch, byp=—prcich, p=

1 In the rest of this section, for convenience we deviate from the usual summation convention employed in
the previous parts of the paper and sum over repeated indices on the same level as in (8.24),.

23-3
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The corresponding components of N## and the uniform normal pressure f* are given by

Neb = 2p[W, 8%F + 2(r2ctch+c2cp) W), } (8.32)
S =2ur{clcl Wy +2[(rcked)? + (ckc2)?] Wy,
where the arguments 7;, 1, of the functions ¥, (r = 1, 2) are given by
I =r2lci+c2e?, I, = (rPcich+c2ch) (rlckch+cics). (8.33)

In view of the forms of the strain invariants (8.33) the strain energy density in (2.29) can be
regarded as a different function ¢ of r and ¢, i.e.

¥ =P h) = ¥(r,c)). (8.34)
Then, by use of (8.33) and the chain rule for differentiation, (8.32), can alternatively be repre-

sented as
Sfi= ‘u%;i_r . (8.35)

Family 4 — Expansion, straightening and|or bending, stretching, shearing and torsion of a sector of a right
circular cylinder of radius R ( > 0) into a sector of another right circular cylinder of radius r (> 0), as well as
expansion, turning inside oul, stretching and torsion of a tube (i.e. a complete circular cylinder) into another
tube. Consider first the more general case of a right circular cylinder. The initial and the deformed
membranes in this family are specified by (8.3), and (4.1) and by (8.9), and

p= p(,]—f |det k|2, (8.36)

respectively. In view of the choice of the convected coordinates specified by (7.2), and (8.3),,
A,z and B, ; of the initial surface & are given by (8.4), while a, 4 and 4,4 of the deformed surface
4 are found to be the same as (8.31). The corresponding expressions for N*# and f3 are
2 7e})2 + (¢3)2 )
Nu =2 [yf1+2(—i)7i,2ill wz],
N3 = 20(, + 2[(1ed)+ ()] W)

4
N2 = N2l — }T/; (riies+cied) Py,

1y 2 2(1\4 4 (1,2)2 (8.37)
3 = 2ur [(%) + (cé)z] Y, +4ur l'r___________(c]) }24(01 4)
ret c5)® 4} ey ¢} ¢3
+2( i) R2 - 2""2(‘%)4"'(‘%05)2] ¥,
o
= ‘u-&‘-.
In (8.37), the functions ¥, (r = 1, 2) depend on the strain invariants
1\2 4 (,2)2
1= VDT (e s (e,
o)+ (), 2+ A (539
I, = D R2 +[(re3)? + (3)?]*
and, in view of (8.38), the strain energy density in (2.29) has been expressed as a different function
& orr, R and ¢}, i.e. V= 37;(11, L) = ,‘2,(,, R, ¢%). (8.39)
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The foregoing results are valid when & is a sector of a right circular cylinder, including the
special case of a tube. In the latter case the results simplify considerably and corresponding to
the expressions in (8.31), (8.36), (8.37), (8.38) and (8.39) we have in the order listed

P s + 72 P +c}
@ \erd dpr@e) "7 sa @2

. (8.40)
p=l8l_ i1 g,
5
P = Pora]> (8.41)
N1 =(2p/R?) [P, +2(r[R)?W,], N22=2p{¥,+2[(rc3)?+(c3)?] P,},
N2 = N — (4p[R%) (£ 1) PR ¥, 5.2
7= 2| gt @) wr 22 () +r@is @] wf = w3
I = (1R + (1) + ()%
I, = PR+ 207G R)2 + [(re})2 + (camz} (8:43)

and ¥ =9 1) =)0, R d, ). (8.44)

Family 5— Expansion or eversion of a sector of a sphere of radius R into a sector of another sphere of radius r.
The initial and the deformed membranes in this family are specified by (8.5), and (4.1) and

by (8.11), and p = po(Rr)2, (8.45)

respectively. In view of the choice of convected coordinates specified by (7.2), and (8.5),, 4,4
and B, of the initial surface & are given by (8.6), while a,; and b, of the deformed surface 4
are given by (8.14). The corresponding expressions for N*# and f? are

R? R 2
N2 = N2 = 0, (8.46)

2
N1 = N225in2 @ =g-’3(¥fl+2ﬁ-¥’) _o¥

r r\2?
f3='_*:4R#2[T1+2(R) Y’z] =3

where the strain invariants which occur in the arguments of ¥, are

r\? r\*
I, =2 (E) , Ly=2 (1—2) (8.47)
and, in view of (8.47), the strain energy density can be expressed in terms of a different function
of rand R as v =PI, L) = ¥(r,R). (8.48)

Recalling lemmas 8.1 and 8.2, the foregoing results may be summarized by the following
two theorems:

TueorEM 8.1. If the initial surface is either a plane or a right circular cylinder and if the normal pressure
f3 = 0, then the solutions for families 1 and 2 given above are the only possible controllable solutions in every
isotropic elastic membrane whose strain energy density is given by (2.29) and whose initial mass density is
uniform throughout & .
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THEOREM 8.2. If the initial surface is a plane, a sector of a right circular cylinder or a sector of a sphere,
then under a nonzero uniform normal pressure the solutions for families 3—5 above are the only possible
controllable solutions in every isotropic elastic membrane whose strain energy density is given by (2.29) and
whose initial mass density is uniform throughout & .

The results reported here were obtained in the course of research supported by the U.S.
Office of Naval Research under Contract N00014-75-C-0148, Project NR 064-436, with the
University of California, Berkeley.
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APPENDIX A

This appendix provides details of the derivation of the solution of the system of differential
equations (5.10) when K = 0.

First, with the help of (2.13), (2.14) and the dual of (2.8),, we note that it is easy to show
the partial differential equations (5.10) imply (4.8); and (4.12). The last two algebraic equations
with the help of the dual of (2.4), can be readily expanded and solved for a;; Ay, a5y 4,4 in the

forms gy Agy = aya Ayp + [y A = (A4y; Ay U)'%]»} (A1)
g Ay = @19 Ayo+§[c; AT (A4, Ay U)E],
where Uis defined by~ U= (26—2) —122 0, u— 42~ (A2)
(411 450)%

and the nonnegative restriction imposed on U is demanded by the fact that each of a;; 4y,
g9 Ay is real.

In what follows, we consider separately the two cases in which U assumes zero or positive
values everywhere on the surface 4. In the special case that U vanishes everywhere, ] from (A 2),
(A1) and (4.11), we readily obtain

a a 2¢ 3
= =do 1+ (F—1) (A du) 4|,
Ay Ay 4
2 3 (A3)
Co
Ay = 3¢y [AIZ t (c_% - ) (A Azz)%]o
% The case in which U may vanish at some isolated points will be excluded. In fact, henceforth we exclude
consideration of isolated points at which the value of a function such as U is zero, especially when differentiation
of the function is required.
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In the case when U is positive, using (2.10), 5 and the dual of (2.4),, expansion of (5.10) with
indices (o, B,7) = (1,2, 1) and (1, 2, 2) leads to the differential equations
4 A
%,y —a —’—=—{a 4 [A _4 &1]+ a3y A [2A — A, A _11-1]}
12,1 12 A A ( 11 22) 11,2 12 A22 ( 22 11) 12,1 11,2 12 A11

A4 1 A A
2455 — 15% =~ (a1 Ap) | 241 0 — Ang 1 — A =122 | + (@ A1) [ Aas 1 — 4122 |-
44 Ag 4,4

After substituting (A 1) into (A 4), dividing both sides of the resulting equations by (the nonzero)
U? and simplifying we obtain

(A4)

— u’a =
B[
where the expressions for X, on the right-hand side of (A 5) are defined by (5.19). It is important
to note that the main reason for the reduction of (A 4) to the forms (A 5) is the fact that X,
on the right-hand side of (A 5) involve only the metric coefficients 4, ; on the initial surface.
If 2¢, —¢? # 0, then it must be positive according to (4.11),. Hence, the function

(A5)

v = arccos [ 2¢y—c3 > 0) (A 6)

+ (26, — cf)
is well defined and the differential equations (A 5) may be rewritten as
v, =X, (A7)

Further, by using (5.19), the expanded version of (2.11) and (2.21),, it can be seen that the only
nontrivial integrability condition for (A7), namely

X]’z “Xz’l = 2A%K = O’ (A 8)
is identically satisfied as to be expected. Therefore, (A7) can be integrated to yield
v=1", (A9)

where V is given by (5.18). Next, by using (A 6) with its left-hand side now specified by the
solution (A 9), from (A 2), and (A 1), , follow the solutions (5.17).

The last results have been obtained under the condition (A 6),. Consider now the case in which
2¢,—¢§ = 0. Then, by applying the argument of real numbers directly to (4.10) and using
(4.8),, we obtain immediately the result (5.7). Evidently, the expressions (A 3) for vanishing
values of U, as well as (5.7) for vanishing values of (2¢, —¢3}), are contained in the more general
results (5.17). Moreover, it can be easily verified that (5.17) does indeed satisfy the differential
equations (5.10) identically. Hence, (5.17) is the desired solution for ,; when K = 0.

AprPPENDIX B

This appendix provides details of the derivation of the solutions for 4, from (4.8);, (2.18)
and (2.19).

In view of the results (5.17) and (5.7), as well as (5.8), which is equivalent to (5.7) or (5.17),
the expression for the component R,,,, of the curvature tensor in the deformed configuration
can be calculated (in terms of the Christoffel symbols) from (2.6), 5 and (2.7),; and this result,
with the help of (2.10); and the duals of (2.6), 5, can be related to R, in the initial undeformed
configuration. The resulting expression after using also the dual of (2.20) and (2.21), becomes

Ripie = §6 AK. (B1)
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With the use of the last relation, the two algebraic equations (2.19) and (4.8); can be solved
for byy Asy, byy Ay in the forms

by Aze = big Ayp+3[cs A £ (AAyy Ay U)%]a
bog Ayy = byp Ayp+3[cs AF (4411 Ay U)%],

where Uis defined by U = (2—2¢,K)—i2> 0, = M%z,
(A1 Az0)?

and the nonnegative restriction imposed on U is demanded by the fact that each of b;; 4,
bas Ay is real. Next, with the use of (5.8),, from the expanded version of the Mainardi-Codazzi
relations (2.18) we obtain the two differential equations

A A
bio1+5 2 [Au Ay ( 1;1111 + Az:zl) +24,,(As5,,— Au,z)] by

1
= by gt [bA (A +4 ’)
2 t57 (b11 422) et Ay -
A
+ (632 411) ("Au.z —4y 1;1 ! +24,,, 1)]
byo o+ = [AA Ay A22’2+2A (Ayp0—Ags 1) | 0
2oy | Ande | T 12(A12,0—Asa,1) | 012
A
= b221+2A [(5111422) (_A22,1—A12 Azz +24,,, 2)
A
+ (ba 411) (—A22,1+A12 Au,z)].
1

Since the analysis that follows requires differentiation of 4;, and 4,,, we consider separately
the two cases in which U assumes zero or positive values everywhere on 4. In the special case
that U vanishes, it follows from (B2) and (B 3) that

(B2)

(B3)

(B4)

._=-—=-1—ci62—2cl?'%’A A -%A 3
1 A22 2[3 (3 1 ) ( 11 22) 12] <B5)

biy = $[c3 Ase £ (¢ — 20, K)} (4, 4p,)3],
provided K < ¢2/2¢,.

Before continuing our general development for obtaining the necessary restrictions on 4,4
and K from (B4), we observe that in the special case in which K = ¢2/2¢, the expressions (B 5)
can be specialized at once to the forms (5.26) and these satisfy (B 4), , identically. In the more
general situation where K < ¢3/2¢,, after introducing (B 5) into (B 4), ,, the restrictions on 4,,
and K can be expressed as B

- X, =0, (B6)
where X, are defined by (5.23),; ,.

In the case in which U is positive everywhere on 4, we may use (B2) to eliminate 4, 4,,,
by Ayqy by1,2 and by, in (B4) and then for simplicity replace the variable 4,, in the resulting
expressions by # in (B 3), to obtain

v -L(—4a +z7A%)
Uyt A22 Bl b 3L
Ay,

_ 4
ol A e (G227 ) @7

o [(AA Ago)t s Agpp A (417 4s,) _  A}K
U%{( 11492)% 2 Haze +1A—%[A 14e2),1_ 94 ]}+0 i’
Aoo(An dpo)t 45, * Ay Ay, BT A, O



http://rsta.royalsocietypublishing.org/

'y
fA \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

=\

.
/ |
L

y \

r

A

SOCIETY

A

OF

A

OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATION IN ISOTROPIC ELASTIC MEMBRANE 187

and ‘7,1[1%( A12+u§h)]+gz |
1
(1 4 4
=l |~ At A (-2 522) | (B9)
o ((Ady Ag)h Ay, A (A An) AR,
i (444, 45, 1 Aua l—A"%[A Audelz o4 J}
{Au(Au Agp)t 43 T ¥4y, 2% 45 U%

From (B3), and the restrlctlon U > 0 we have K < ¢3/2¢;; and it follows that the determinant

of the coefficients of @, in (B7) and (BS8), namely A(c3—2¢; K)/(A4y; 455 U), does not vanish.
Keeping this and (B 3), in mind, from (B 7), , we can solve for # , in the form
- ( —2¢, ) v\ 7T
=21 le (4 x)Ut B9
-4 2( 26‘1 K) ( - ac) 3 ( )

where X, are given by (5.23). Dividing both sides of (B 9) by (the nonzero) U?%, making use of
(B 3), and introducing the well-defined function v by

¥ = arccos [i] + (¢2 — 2¢, K)#], (B10)
we finally obtain Uy=2X, (B11)

In order to ensure the existence of the function # (or equivalently ,,, in view of (B 10) and
(B 3),), we must require K to be of class C2 and that X, be restricted by the integrability con-
dition (5.22), i.e. we must find solutions of (B 11) such that 4, and K satisfy the criterion (5.22).
Once (5.22) is satisfied, (B 11) can be integrated to yield

g7, (B 12)

where V is given by (5.24). Next, in view of (B 10) with its left-hand side now specified by the
solution (B 12), from (B 3) and (B 2), , follow the solutions (5.21).

With the help of (B 8), ,, it can be easily shown that by setting 7 = 0 and assuming K < ¢3/2¢,,
the criterion (B 6) and the corresponding result in (B5) can be readily recovered from (5.22)
and (5.21), respectively. Hence, the above solutions of (4.8);, (2.18) and (2.19) for b,, may be
summarized as follows:

(i) When K < ¢/2¢, and the criterion (5.22) is satisfied, the solution for b, is given by (5.21);

(ii) when K = ¢}/2¢, > 0, the solution for b, is given by (5.26); and

(iii) there are no solutions when K > ¢2/2c;.
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